
FINITE-TIME LAGRANGIAN TRANSPORT ANALYSIS:

STABLE AND UNSTABLE MANIFOLDS OF HYPERBOLIC TRAJECTORIES

AND FINITE-TIME LYAPUNOV EXPONENTS

By

Michal Branicki

and

Stephen Wiggins

IMA Preprint Series # 2268

( August 2009 )

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 Lind Hall
207 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612-624-6066 Fax: 612-626-7370

URL: http://www.ima.umn.edu



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
AUG 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
Finite-time Lagrangian transport analysis: Stable and unstable manifolds
of hyperbolic trajectories and finite-time Lyapunov exponents. 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Minnesota,Institute for Mathematics and Its 
Applications,Minneapolis,MN,55455-0436 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

Same as
Report (SAR) 

18. NUMBER
OF PAGES 

43 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Finite-time Lagrangian transport analysis: Stable and

unstable manifolds of hyperbolic trajectories and finite-time

Lyapunov exponents.

Micha l Branicki1,2 and Stephen Wiggins1

1 School of Mathematics, University of Bristol, University Walk, UK
2 College of Earth, Ocean, and Environment, Robinson Hall, University of Delaware, US

Abstract

We consider issues associated with the Lagrangian characterisation of flow structures arising
in aperiodically time-dependent vector fields that are only known on a finite time interval. A
major motivation for the consideration of this problem arises from the desire to study transport
and mixing problems in geophysical flows where the flow is obtained from a numerical solution,
on a finite space-time grid, of an appropriate partial differential equation model for the velocity
field. Of particular interest is the characterisation, location, and evolution of transport barriers
in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian
transport has to account for the effects of transient flow phenomena which are not captured
by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of
finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as
finite-time Lyapunov exponent (FTLE) fields and associated Lagrangian coherent structures
have been the main tools for characterizing transport barriers in the time-aperiodic situation.
In this paper we consider a variety of examples, some with explicit solutions, that illustrate, in
a concrete manner, the issues and phenomena that arise in the setting of finite-time dynamical
systems. Of particular significance for geophysical applications is the notion of flow transition
which occurs when finite-time hyperbolicity is lost, or gained. The phenomena discovered and
analysed in our examples point the way to a variety of directions for rigorous mathematical
research in this rapidly developing, and important, new area of dynamical systems theory.

1 Introduction

Organised or ‘coherent’ structures in fluid flows have been a subject of intense study for some
time, especially since the seminal paper of Brown and Roshko ([14]). The dynamical systems
approach to the Lagrangian aspects of fluid transport, which became widespread in the 1980’s
and 90’s, has provided a variety of techniques for determining the existence and quantifying
‘organised structures’ in fluid flows. Hyperbolic trajectories and their associated stable and
unstable manifolds have provided one approach to this problem, in both the periodic and
aperiodic time dependent settings, that dates back to the beginning of studies of ‘chaotic
advection’ in fluid flows ([68, 3, 1, 4, 86, 47, 74]). More recently, the notion of ‘Lagrangian
coherent structure’ (henceforth LCS) derived from finite-time Lyapunov exponent (FTLE) fields
has provided another means of identifying coherent flow structures in fluid flows which can be
used in Lagrangian transport analysis ([42, 37, 38, 78, 59]). The purpose of this paper is to
compare the methods based on determination of stable and unstable manifolds of hyperbolic
trajectories with LCS’s derived from FTLE’s as techniques for uncovering organised structures
in fluid flows and quantifying their influence on transport.
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We begin in Section 2 by reviewing some theoretical issues associated with Lagrangian
transport analysis in time-dependent vector fields defined over a finite time interval. We also
and take the opportunity to clarify a number of misconceptions that have arisen in the literature
concerning the applicability of hyperbolic trajectories and their stable and unstable manifolds
in analysing Lagrangian transport in fluid flows, especially with respect to their comparison
with LCS’s. This will naturally lead to the issue of a relationship between the stable and
unstable manifolds of hyperbolic trajectories and LCS’s.

The purpose of this paper is to compare the methods based on detection of stable and
unstable manifolds of hyperbolic trajectories with LCS’s derived from FTLE fields as techniques
for uncovering organised structures in unsteady fluid flows. We will particularly focus on the
performance and applicability of these techniques in flows undergoing transitions associated
with a loss or gain of finite-time hyperbolicity by some trajectories. An understanding of
this relationship is essential for understanding the role that each of these structures plays in
Lagrangian transport. Both methods can have drawbacks as tools for diagnosing the finite-
time Lagrangian flow structure, In Section 3 we consider a series of examples which aim at
providing a guide for choosing the most suitable technique for a particular application. We
begin the discussion by studying a one-dimensional non-autonomous system which can be
solved analytically and which provides a good illustration of issues concerning the finite-time
hyperbolic trajectories and FTLE fields in higher dimensions. The subsequent examples of 2D
non-autonomous systems are chosen to highlight various properties and problems arising in the
invariant manifolds and FTLE analysis.

We summarise our findings in Section 4 where we also discuss a number of outstanding
problems. The Appendices contain a number of technical details and definitions, as well as a
discussion of some important facts necessary for computation of finite-time stable and unstable
manifolds.

2 Some Theoretical Background and Questions

In this section we describe some of the relevant theoretical issues related to hyperbolic trajec-
tories and their stable and unstable manifolds and LCS’s. This will serve to highlight some
practical issues arising from applications and computation, as well as the need for further
theoretical and computational developments. We will not go into great detail in describing
the theoretical results and computational methods since they are already covered in numerous
papers in the literature; relevant references will be provided wherever appropriate in the discus-
sion. Rather, we will discuss ideas and concepts and provide a guide to the existing literature.
In order to achieve a relative self-containment of the following discussion, we also provide a
number of important definitions in the Appendix A in order to make this discussion easier to
follow.

The notion of hyperbolicity of a trajectory has been around for some time. It is particularly
worth remembering in the context of the present discussion that hyperbolicity is not dependent
on the nature of the considered time dependence (although continuity in time, which is also our
operating assumption here, eliminates many technical issues). In particular, if hyperbolicity is
determined by Lyapunov exponents ([51]) or exponential dichotomies ([19]), then the nature
of the time dependence, e.g. periodicity, quasiperiodicity, or aperiodicity plays no role in any
of these definitions (and equivalence between these definitions is considered in [24]). Once a
hyperbolic trajectory is located, then the stable and unstable manifold theorem for hyperbolic
trajectories immediately applies, and this is also independent of the nature of the time depen-
dence. It can be verified that the statement of this theorem is also independent of the nature
of the time dependence by examining, for example, its proof in the classic ordinary differential
equations textbook of Coddington and Levinson [18]. Additional resources on the stable and
unstable manifold theorem for arbitrary time dependence can be found in [21, 46, 51].

Of course, a central issue in practical applications is the location of hyperbolic trajectories
in aperiodically time dependent velocity fields. Historically, there have been many algorithms
for finding equilibrium points (stagnation points) of steady velocity fields and periodic orbits of
time-periodic velocity fields, but relatively little work had been done on algorithms for finding
hyperbolic trajectories of aperiodically time dependent velocity fields (and quite a few new is-
sues arise, in comparison to the issues associated with steady and time periodic velocity fields,
which we will mention below). An algorithm for determining hyperbolic trajectories in arbi-
trary unsteady flows was given in [45] and further refined in [49, 61]. This technique is based
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on an iterative method defined on a space of ‘paths’ and, provided it converges, is guaranteed
to yield a hyperbolic trajectory on a specified time interval which is bounded in most practical
applications. (The ‘finiteness’ of the considered time interval brings up yet another technical
issue that we will shortly address.) The iterative algorithm requires an initial ‘guess’ in the form
of a C1 path defined on the appropriate time interval. It is important to stress here that such
a path need not be a trajectory of the velocity field. We provide a few more details regarding
some necessary properties of the initial guess in the Appendix A (cf Definition A.5 and remarks
after Definition A.6). The initial guess is often chosen to be a path of hyperbolic instantaneous
stagnation points (ISPs, cf (83), Appendix A). This particular choice of the initial path has lead
to numerous misleading and incorrect statements in the LCS literature related to the notion of
“Galilean invariance” and the nature of this algorithm ([58, 59, 78]). Galilean transformations
consist of spatial translations, time translations, shear transformations, reflections, and rota-
tions. Paths of ISPs are not, in general, particle trajectories. This has been a known fact in
the fluid dynamics community for some time, and a simple proof can be found, for example, an
appendix in [45]. Clearly, ISPs are not invariant under Galilean transformations. However, it is
well-known in the dynamical systems community that trajectories are invariant under Galilean
transformations (i.e. a trajectory maps to a trajectory under a Galilean transformation) and
hyperbolic trajectories to which the iterative algorithm converges are likewise invariant under
Galilean transformations1. Consequently, the fact that a non-Galilean invariant path is used as
an initial guess for the iterative algorithm is irrelevant since if the algorithm converges, it yields
a hyperbolic trajectory, which is manifestly Galilean invariant. Likewise, since the stable and
unstable manifolds of a hyperbolic trajectory are, by definition, composed of trajectories, they
are also Galilean invariant. The importance of Galilean invariance to specific oceanographic
investigations is another matter entirely. Oceanographers require a fixed reference frame to de-
scribe the ocean through measurements and grid based computations. In the chosen frame, the
behavior and stability of ISPs have historically played an important role in describing observed
Eulerian flow structures. While ISPs may bear little relation to particle trajectories, we believe
that dismissal of their utility on the grounds of not being Galilean-invariant is unjustified.

Now we return to a more serious issue. Hyperbolicity, and therefore hyperbolic trajectories
and their stable and unstable manifolds are ‘infinite-time objects’. More precisely, hyperbol-
icity of a trajectory is determined on the basis of the asymptotic behaviour of neighbouring
trajectories in the infinite time limit. The stable and unstable manifolds associated with a hy-
perbolic trajectory are proven to exist via a fixed point, or iterative, argument where the limit
as time goes to either positive or negative infinity is taken. If the velocity field is aperiodic in
time, and it is obtained from the output of a numerical computation, then we have knowledge
of the velocity field only on a finite time interval. This fact creates a host of new problems in
applying the ‘traditional’ dynamical systems approach to fluid transport. The main difficulty
in the ‘finite-time’ description of Lagrangian transport stems from the fact that the dynamical
systems theory is generally concerned with the ‘long time behavior’ of systems of ODE’s (many
of these problems are discussed in [86] and [62]). In particular, the standard definitions of
hyperbolicity of trajectories do not apply to velocity fields that are only known on a finite time
interval (henceforth finite-time velocity fields).

The subject of ‘finite-time dynamical systems theory’ gives rise to many new issues that
require new theoretical and computational results. These are discussed in [86, 62]. There have
also been a number of mathematical papers developing various aspects of this subject in recent
years ([28, 8]). The ‘finite-time’ framework is intrinsically dependent on the time interval one
considers in the analysis and the implications of non-uniqueness associated with this setting
has been discussed in numerous papers, see, e.g., [66, 41, 36, 45, 62]. In particular, in the
context of finite-time dynamical systems, hyperbolicity of a trajectory is defined over a finite
time interval (cf Definitions A.4 and A.11 in the Appendix A) and the stable and unstable
manifolds associated with the trajectory no longer have a lower dimension than the underlying
phase space (cf Appendix B and [28]). Consequently, a trajectory which is hyperbolic over
some time interval (in the finite time sense) may not be hyperbolic over a longer time interval.
In other words, given that a < b < c < d, it is possible for a trajectory to possess finite-
time hyperbolic characteristics on all intervals contained in Iab = [a, b], and then lose such
characteristics on some intervals contained in Ibc, possibly regaining the finite-time hyperbolic
properties for all intervals contained in Icd. We refer to such a scenario as a ‘loss’ and a

1The Galilean invariance of hyperbolic trajectories is proven in [45] for hyperbolicity determined with exponential
dichotomies.
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subsequent ‘gain’ of finite-time hyperbolicity and point out that one cannot pin these transitions
to a particular time instant. Purists in dynamical systems theory may immediately object by
saying that hyperbolicity is a notion that only has meaning for trajectories defined for all
time. According to the traditional definition, this is certainly correct. However, applications
to transport in velocity fields defined for finite time have motivated this new definition of
hyperbolic-like properties over a finite-time (i.e. the finite-time hyperbolicity) and the notion of
loss or gain of (finite-time) hyperbolicity has proven useful for describing the transient behavior
of a number of time dependent structures in oceanographic flows. We will discuss examples of
simple flows whose transitions are induced by the loss (or gain) of finite-time hyperbolicity in
§3.2.2, §3.2.6 and §3.2.7.

In any case, it is important to realise that all of the finite-time dynamical systems notions
that we mentioned above are trajectory based. That is, the finite-time hyperbolic trajectories
are indeed trajectories and material curves contained in their finite-time stable and unstable
manifolds are barriers to transport (see also Appendix B). Their usefulness for applications
derives solely from their ability to explain new phenomena in applications, and this is assessed
in the context of specific applications.

We now turn to another technique used in the finite-time transport analysis which is based
on determination of the so-called Lagrangian coherent structures (LCS) from finite-time Lya-
punov exponent fields (FTLE). Lyapunov exponents are quantities associated with trajectories
that are obtained as infinite time limits. For an n-dimensional continuous time dynamical sys-
tem a trajectory has n Lyapunov exponents – one associated with a direction tangent to the
trajectory (which is always zero) and n− 1 Lyapunov exponents associated with the remaining
directions. The Lyapunov exponents are measures of the growth of infinitesimal perturbations
in these directions, i.e. growth rates of the linearized dynamics about the trajectory (cf Ap-
pendix A). Of particular interest is the maximum Lyapunov exponent since the existence of a
single positive Lyapunov exponent indicates that the trajectory is unstable. The fundamental
theorem on the existence of Lyapunov exponents is expressed by the Oseledec multiplicative er-
godic theorem ([67]). There are many excellent references on Lyapunov exponents that describe
their properties ([51, 56, 57]) and algorithms for their computation ([23, 22, 24, 35, 32]).

In the infinite-time setting, Lyapunov exponents are one measure of the hyperbolicity of
a trajectory. If a trajectory has nonzero Lyapunov exponents (with the exception of the zero
exponent associated with the direction tangent to the trajectory), it is said to be hyperbolic
([51]). Finite time Lyapunov exponents are obtained by computing the same quantities, but
restricting the computation to a finite time interval, rather than taking the limit as the time
goes to positive infinity (for forward time Lyapunov exponents) or minus infinity (for backward
time Lyapunov exponents)2. Clearly, one would like to know the length of the time interval
on which they must be computed so that they are “close” to the infinite time limit. Some
interesting arguments are given in [34, 29] which indicate that the rate of convergence may
be quite slow. The FLTE technique3 is not immune to the non-uniqueness issues arising in
the finite time setting mentioned earlier. These are highlighted by the fact that for any time
instant in the considered time interval I one can compute a whole family of FTLE fields. We
discuss implications of this fact in the following sections.

For each time instant tn within the considered (or available) time interval I, forward FTLE
fields are obtained by computing the forward Lyapunov exponents of the trajectory starting at
that initial condition at tn in a chosen grid for the length T of time available (and computable)
and colour coding the initial condition according the the magnitude of the largest FTLE (e.g.
bright colors for large values, light colors for small values). By performing such a computation
for an ordered sequence of ‘observation times’, {tn}n∈Z, tn ∈ I, one can examine the spatial
evolution of the structures exhibited by the forward FTLE fields in time. Clearly, backward
FTLE fields can also be computed by reversing the direction of time. Note here that for any
tn in such a sequence it is possible to compute an FTLE field for any T such that tn + T ∈ I.
It is often not obvious which length of the integration time interval T should be chosen in such
computations especially when the structure of the resulting FTLE fields varies significantly for

2We note that in the literature the notion of a “direct Lyapunov exponent” (DLE) has been introduced ([37]).
This has created some confusion in the literature in the sense that the acronyms ”FTLE” and ”DLE” are used
somewhat synonymously. In recent years the consensus has become that there is no substantive difference between
the two notions and “FTLE” has now returned to being the accepted acronym (e.g., see [78, 76, 77, 59]).

3We note that in much of the literature concerning FTLEs, the phrase refers to the maximum FTLE.
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different values of T . We discuss these issues in most of the examples presented in §3.
Since Lyapunov exponents are a measure of the (linearized) growth rates of a set of or-

thogonal directions perpendicular to the tangent vector to a trajectory, FTLE fields have been
more physically referred to as “stretching fields”4. Numerous groups have computed FTLE
fields over the years in the context of fluid transport (e.g., [69, 70, 83]) and have noted that
these fields appear to exhibit a great deal of structure. A more precise quantification of such
structures have led to the notion of LCS ([36, 42, 37, 38, 39, 78, 59]). In particular, since
FTLE’s are a measure of separation of nearby trajectories after some finite-time, regions of
high values for the maximal FTLE would seem to be likely candidates for regions containing
hyperbolic trajectories and their stable and unstable manifolds. Heuristic arguments support-
ing this assertion are given in the aforementioned references, and will not be reproduced here.
Rather, in this paper we will focus upon the assumption that “maxima” of the FTLE fields
are “approximations” to the unstable manifolds of hyperbolic trajectories (forward time FTLE
fields) and unstable manifolds of hyperbolic trajectories (backward time FTLE fields). We have
put the word maxima is quotes since this notion needs careful consideration. This was done in
[78] via the notion of a ridge curve of an FTLE field. Roughly speaking, a ridge curve has the
property that moving transverse to the direction tangent to the curve corresponds to moving
to a lower value of the FTLE. Precise definitions are given in [78] where ridges of the FTLE
field are taken as the definition of LCS. This raises the question of precisely how “Lagrangian”
are LCS’s? In general, they are not material curves, and therefore not necessarily barriers to
transport. In the following sections we will demonstrate this with several examples designed
to highlight different aspects of the problem. Nevertheless, certain segments of an LCS may
be “close” to a barrier to transport in the sense that the flux across the curve may be small.
This issue was carefully considered in [78]. However, the extent to which LCS’s are barriers
to transport must be assessed after they are computed. The stable and unstable manifolds of
finite time hyperbolic trajectories are a priori barriers to transport since they are computed as
curves of fluid particle trajectories.

We remark that a possible misconception that has appeared in several places in the LCS
literature is that the concept of invariant manifold is somehow either not well defined or applica-
ble or easily interpretable for time-dependent flows, where the time dependence is not periodic
([42, 37, 38, 76, 58]). In particular, this point has been emphasized in the finite time dynam-
ical systems context. While the approach to Lagrangian transport based on finite-time stable
and unstable manifolds of finite-time hyperbolic trajectories certainly requires more complex
algorithms and computational techniques, the results, being trajectory based, are certainly un-
ambiguous (in that sense) and the value of the approach can only be assessed in its ability to
explain Lagrangian transport phenomena. Towards this end we note that [60] utilises a finite
time, realistic velocity field obtained from a data assimilating oceanographic model (DieCAST)
that uses finite time hyperbolic trajectories and their (non-unique) stable and unstable mani-
folds to give the first Lagrangian characterization of a salinity front in the Mediterranean Sea
and provide and explanation and characterization of the notion of ‘leakiness’ of the front. Of
course, the finite time issues mentioned above do require careful consideration in the context
of specific applications. It is incorrect to think that the LCS approach has somehow “solved”
this problem.

A broader issue here, which keeps recurring throughout the following discussion, concerns
the problem of description of the Lagrangian structure of a time-dependent flow in a way which
would allow for a meaningful finite-time Lagrangian transport analysis. It is well known that
in order to establish the existence of, for example, a transport barrier (i.e. a flow-invariant,
Lagrangian structure) in the non-autonomous case, one requires non-local (in time and space)
information about the governing flow. As already pointed out, the finite-time notions discussed
above may provide ambiguous diagnostics due to their potential sensitivity to the time-interval
chosen for extracting the relevant information. Consequently, it seems crucial for the devel-

4As we have noted, FTLE’s are a measure of the growth of “infinitesimal perturbations” to a given trajectory, i.e.
growth rates of the linearized dynamics about a trajectory. Finite size (or “scale”) Lyapunov exponents (FSLE’s) are
a technique to analyze the growth of “finite perturbations” to a given trajectory. Alternatively, FSLE quantify the
relative dispersion of two particles, as discussed in [9]. In [9, 53, 48, 25, 31, 26] Lagrangian structures are identified
using FSLE’s. The maxima of the FSLE fields look very much like the maxima of FTLE fields and bear a striking
resemblance to the stable and unstable manifolds of hyperbolic trajectories. However, it must be emphasized that
FSLE’s are a non-rigorous numerical technique and, despite the strong numerical evidence, there are no theorems
relate the results of the calculations to Lagrangian transport barriers. Much like the case with FTLE’s, this must be
assessed “after the fact”.
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opment of a general theory of finite-time transport in aperiodically time-dependent velocity
fields to understand and properly describe transient flow phenomena. Undoubtedly, this task
requires development of tools which would adequately capture the finite-time flow properties.
The examples discussed in the next section highlight a number of important points regarding
the techniques of invariant manifolds and FTLE fields:

(1) One can obtain a good agreement between the ridges of the FTLE fields (i.e. the LCS)
and the finite-time stable/unstable manifolds of distinguished hyperbolic trajectories in
sufficiently ‘well-behaved’ flows,

(2) Both approaches may provide non-unique results, particularly in flows undergoing tran-
sitions (discussed later), and their interpretation may require a subjective interpretation.
The main drawback affecting the invariant manifold computations lies in identifying the
appropriate hyperbolic trajectory (i.e. the Distinguished Hyperbolic Trajectory) used for
‘seeding’ the finite-time stable and unstable manifolds. The main drawback affecting the
FTLE technique stems from the fact that it is a function of trajectory separation which
depends, in general, on the time interval chosen for assessment of such a measure. Conse-
quently, in flows undergoing transitions it is often difficult to decide which time interval is
most suitable for assessing the (non-local) flow structure. Moreover, there is no guarantee
that the time evolution of the ridges of locally strongest separation is continuous in time.

3 Tests

In this section we analyse a wide range of example flows for which both the FTLE fields and
the appropriate invariant manifolds are computed. We then analyse and compare the infor-
mation about the Lagrangian flow structure obtained from computing the backward/forward
FTLE maps, and the information obtained from computing the unstable and stable manifolds
of certain Distinguished Hyperbolic Trajectories (cf Definition A.6) in these flows. The al-
gorithms used for computing the DHTs and their manifolds, based on the ideas described in
[45, 49, 63, 61], were developed in MATLAB. The FTLE computations are performed also in
MATLAB using an implementation of methods described in [37, 78, 76, 77]. We also compare
our results with the LCS MATLAB Kit v.2.3, developed in the Biological Propulsion Labora-
tory at Caltech, which is available online [20]. In the case of the LCS MATLAB Kit, several
minor modifications were introduced in the code in order to enable FTLE computations from
analytically defined vector fields.

All the examples considered here are based on analytically defined velocity fields. While
the resulting flows are certainly not sufficiently complex to be of importance in practical ap-
plications, they provide an easily reproducible testbed for our analysis.

3.1 1D non-autonomous configuration

We consider first a one-dimensional, non-autonomous ODE which can be solved analytically,
and which illustrates in the simplest possible setting a number of issues which are important
in the following sections. Based on three related examples, we highlight potential difficulties
when trying the uncover the structure of a non-autonomous flow using the finite-time Lyapunov
exponents, or when trying to identify some ‘special’ trajectories which play an important role
in organising the global dynamics. Of course, in such a setting there are no non-trivial invariant
manifolds in the (non-autonomous) flow. However, one can consider the 1D geometry discussed
below to represent some aspects of transverse dynamics in the neighbourhood of an invariant
manifold in a higher-dimensional flow; in fact, we use this analogy in §3.2.7. Here, we are
particularly interested in the properties of the FTLE maps and their relationship to during
certain flow transitions characterised by changes of finite-time stability properties of some
distinguished trajectories in the flow.

Consider a one-dimensional, non-autonomous dynamical system given by

ẋ = x
`
σ(t)− x2´, x, t ∈ IR, (1)

where σ(t) is a prescribed function of time. In the autonomous configuration, with σ = const. < 0,
the trivial solution x = 0, representing the only fixed point in the flow, attracts all trajectories
as t → ∞. When σ = const. > 0, there are three fixed points in the flow: x1 = 0, and
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Figure 1: Geometry of the one-dimensional flows (1) with the time dependence induced by σ(t) characteristic of the
three scenarios considered in §3.1. The trajectories γγγ1(t), γγγ2(t) are distinguished in the sense described in appropriate
sections. Analysis of these flow structures using the FTLE technique are summarised in figures 2, 3 and 4.

x2,3 = ±
√
σ. It can be easily checked by examining the linearisation of (1) about these points

that x1 is an unstable hyperbolic fixed point and x2,3 are stable hyperbolic fixed points.
When ∂σ/∂t 6= 0, it is more convenient to consider the resulting dynamics in the extended

phase space, spanned by
˘
ex, et

¯
, with coordinates (x, t). We note here that (1) is, in fact, a

Bernoulli equation with solutions given by the family

x(t;x0, t0)2 =
1

1

x2
0

e
−2

R t
t0
σ(s)ds

+ 2

Z t

t0

e−2
R t
k σ(s)dsdk

. (2)

It can be easily verified using (2) that x(t0, x0, t0) = x0. For any trajectory x(t, x0, t0), given
by (2), we can consider a perturbation, x(t, x0 + δ0, t0), with δ0 � 1, so that the growth of the
perturbation after time T is given by

δ(T, δ0, x0, t0) = |x(t0 + T, x0, t0)− x(t0 + T, x0 + δ0, t0)| =
˛̨̨̨
∂x(t0 + T, s, t0)

∂s
|s=x0δ0 +O(δ 2

0 )

˛̨̨̨
.

(3)
Thus, since the solutions (2) are continuous, the growth of an infinitesimal perturbation intro-
duced at (x0, t0) after time T is given by

∆(T, x0, t0) = lim
δ0→0

δ(T, δ0, t0)

δ0
=

e
−2

R t0+T
t0

σ(s)ds˛̨̨̨
e
−2

R t0+T
t0

σ(s)ds
+ 2x2

0

Z t0+T

t0

e−2
R t0+T
k

σsdsdk

˛̨̨̨3/2 . (4)

We note further that (4) is related to the 1D finite time Lyapunov exponent λT (x0, t0) at time
t0 via

λT (x0, t0) =
1

|T | ln ∆(T, x0, t0), (5)

which is computed over the time interval T , (see the Appendix for a more general formulation).
Note that even if solutions satisfying a given system are only known numerically, an estimate

on the separation rate of trajectories which were initially infinitesimally close can be obtained
via finite differences. Therefore, λT can be estimated for any flow defined by sufficiently smooth
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Figure 2: (a-d) 1D FTLE fields, λT (x, t0), for the flow (1) with σ(t) given by (16) which is characteristic of Scenario
I discussed in §3.1. The finite time Lyapunov exponents, λT , are computed over different time intervals of length T .
In this configuration, there are three ‘distinguished’ trajectories in the flow, γ1,2(t) (cf (10)) and x = 0, which play
an important role in organising the dynamics (blue curves; left column). (b-c) Backward FTLE field computed, using
(4) and (5), at (b) t = 5 and (c) t = −1 with different values of the integration parameter T . Note that the maxima
of the FTLE fields (i.e. the LCS) vary with T , and that they do not coincide with the location of γ1,2(t = −1) in the
transition phase (e.g. (c)), regardless of the value of T . See text for a discussion. (d-e) Forward FTLE field computed
for the same flow at (d) t = 0 and (e) t = −10 with different values of the parameter T .

velocity field on some time interval I. Consequently, the map

IR 3 x→ λT (x, t0) ∈ IR, t0 + T ∈ I ⊂ IR, (6)

can be used, in principle, as a straightforward diagnostic tool for uncovering time-dependent
flow structures characterised by locally strongest separation of nearby trajectories. Note how-
ever, that at any time t0 during the flow evolution one can construct the whole family of
FTLE fields {λT (x, t0)}T+t0∈I which generally results in a non-uniqueness of the computed
diagnostic. The ambiguities associated with choosing the ‘right’ FTLE map from the family
{λT (x, t0)}T+t0∈I which ‘best’ describes the flow structure at a given time are especially evi-
dent in analysis of flows displaying transient phenomena. We recall that this problem is not
restricted to the FTLE method. In particular the techniques, mentioned in §2, based on iden-
tification of the so called ‘distinguished hyperbolic trajectories’ and their invariant stable and
unstable manifolds suffer from similar limitations in the case of flows defined on a finite time
interval. We analyse these issues further below based on three different scenarios of evolution
of the one-dimensional flow (1), characterised by different types of time dependence induced
by the form of σ(t). Clearly, the dimensionality of the problem does not allow for existence
of any non-trivial invariant manifold of a hyperbolic trajectory. Nevertheless, the discussed
examples serve to highlight some important consequences of flow transitions (specified below)
on the computed FTLE fields and their relationship to some (possibly non-unique) ‘special’
trajectories in the space of solutions of (1). Moreover, we will show that the non-uniqueness
of the FTLE diagnostic may lead to detection of ‘ghosts’ or ‘premonitions’ of flow structures
associated with the future, or past, stability properties of such ‘special’ trajectories. We will
later return to these examples in §3.2.2 in the context of locally transverse dynamics in a neigh-
bourhood of a stable or unstable manifold of a hyperbolic trajectory in the 2D non-autonomous
case.

Scenario I: 0 < σ(t) <∞.
With the above constraints imposed on σ(t), the trivial solution, x(t) = 0, of (1) is (finite-

time) unstable on any time interval I = [ta, tb] ∈ IR in the sense that for each nonempty,
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bounded set x̃I 3 0 there exists a trajectory, x(t, x0, t0), with x0 ∈ x̃I , t0 ∈ I, such that

d

dt
|x(t, x0, t0)| > 0, ∀ t ∈ I. (7)

A more general definition of instability of a trajectory in a non-autonomous dynamical system,
which we do not require here, can be found, for example, in [55]. It can be easily verified that
(7) is satisfied on x(t) = 0 over any time interval I ⊂ IR by noticing that

d

dt

„
1

x(t, x0, t0)2

«
=

2

x2
0

(−σ(t)e
−2

R t
t0
σ(t)ds − 2σ(t)x2

0

Z t

t0

e−2
R t
k σ(s)dsdk + x2

0), (8)

which implies that (7) is satisfied at least for

x2
0 <

σmine
−2σmin(tb−ta)

1− e−2σmax(tb−ta)(e2σmin(tb−ta) − 1)
. (9)

We note further that there are two ‘distinguished’ trajectories in the space of solutions of
(1) given by

γ1,2(t)2 =
1

2

Z t

−∞
e−2

R t
k σ(s)dsdk

, (10)

which have the property that any trajectory of (1) x(t, x0, t0), x0 > 0 is ‘attracted’ (in the sense
we specify below) towards γ1(t) and any trajectory x(t, x0, t0), x0 < 0 is ‘attracted’ towards
γ2(t). There are two different notions of attraction which we can utilise here. If we rewrite (2)
as

x(t;x0, t0)2 =
1

1

x2
0

e
−2

R t
t0
σ(t)ds

+
1

γ(t)2
− 2

Z t0

−∞
e−2

R t
k σ(s)dsdk

, (11)

it can be seen that the following are true (when 0 < σ(t) <∞)

lim
t→∞

„
x(t, x0, t0)− γ1(t)

«
= 0, ∀ x0 < 0, t0 ∈ IR, (12)

lim
t→∞

„
x(t, x0, t0)− γ2(t)

«
= 0, ∀ x0 > 0, t0 ∈ IR, (13)

and

lim
t0→−∞

„
x(t, x0, t0)2 − γ(t)2

«
= 0, ∀ x0 < 0, t ∈ IR, (14)

lim
t0→−∞

„
x(t, x0, t0)2 − γ(t)2

«
= 0, ∀ x0 < 0, t ∈ IR. (15)

Since we intend to minimise the amount of mathematical formalism here, we just remark
that the property (12) implies that γ1(t) is forwards attracting (and Lyapunov stable) within
x0 ∈ (−∞, 0) and (14) implies that it is pullback attracting within x0 ∈ (−∞, 0). Similarly,
γ2(t) is both forwards and pullback stable within x0 ∈ (0,∞). A more formal introduction to
the stability and bifurcation phenomena in non-autonomous dynamical systems can be found
in [55, 54, 52, 28, 72, 73]. Pullback convergence is useful in constructing limiting sets, such as
the distinguished trajectories in our 1D toy example, provided that the flow is defined on the
negative half-line (−∞, t∗], t∗ > −∞. Otherwise, we cannot uniquely define a distinguished
trajectory. We will see in the next example that these two notions are not necessarily equivalent
in the non-autonomous case.

We can now examine the one-dimensional FTLE fields, λT (x, t0), associated with scenario
I which are obtained from (5) and (4) for different lengths of the integration time interval, T .
The results shown in figure 2 were computed for a sigmoidal function

σ(t) =
1

π
(atan(10(t+ 4)) + π/2 + 0.01), (16)

so that the flow (1) is asymptotically autonomous.
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Figure 3: (a-d) 1D FTLE fields, λT (x, t0), for the flow (1) with σ(t) given by (20) which is characteristic of
Scenario II discussed in §3.1; the fields, λT , are computed over different time intervals of length T . (b-c) Backward
FTLE field computed, using (4) and (5), at (b) t = 5 and (c) t = −8 with different values of the integration
parameter T . In this configuration there distinguished trajectories γ1,2(t) (cf (10)) dominate the flow structure after
the transition when the trivial solution becomes unstable. Note that for sufficiently large values of the integration
parameter T the maxima of the FTLE fields detect ‘ghosts’ of the past stability of the trivial solution and not
the situation at the time of computation t. See text for a discussion. (d-e) Forward FTLE field computed for the
same flow at (d) t = −12 and (e) t = 0 with different values of the parameter T . The trivial solution x = 0 is
globally attracting in the sense of (17) on any time interval I = (−∞, t∗−], t∗− < t∗ where t∗ ≈ −4.105. Note that,
when computed over sufficiently long time intervals, the FTLE fields detect ‘premonitions’ of the future (finite-time)
stability properties of the trivial solution (cf (d)) which is repelling (in this case) on any time interval contained in
I = (−4.105,∞).

The top-row insets of figure 2 focus on detection of attracting structures in the (extended)
phase space of the flow (1). Since such structures should be characterised by separation of
trajectories in backward time, we compute a number of the backward FTLE fields at two
different times t = 5 (b) and t = −1 (c). The geometry of the two attracting distinguished
trajectories γ1,2(t) is marked by the blue curves. Note that the maxima of the FTLE fields (i.e.
the LCS) vary with T , and that they do not coincide with the location of γ1,2(t = −1) in the
transition phase (e.g. (c)), regardless of the value of T . The maxima of the forward FTLE fields,
computed for the same flow at (d) t = 0 and (e) t = −10, are all located at the trivial solution
x = 0 which is unstable. However, during the flow phase when the unstable trivial solution
is ‘sandwiched’ between the two attracting ‘distinguished’ solutions γ1,2, the FTLE field has
to be computed over sufficiently long time intervals in order to reveal a positive maximum
(i.e. exponential growth of the infinitesimal perturbation to x = 0 over the considered time
interval).

Scenario (II): lim
t→−∞

σ(t) < 0, σ(t∗) = 0, and dσ/dt > 0.

In this situation the trivial solution of (1), x(t) = 0, is stable (in the pullback sense) on any
time interval I = (−∞, t∗−], t∗− < t∗, i.e.

lim
t0→−∞

x(t, x0, t0) = 0, ∀ t ∈ I, (17)

and unstable, in the sense (7), on any time interval contained in I = (t∗,∞). Note that the
trajectories γ1,2(t) (10), which are still solutions of (1), are now only asymptotically attracting,
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i.e.

lim
t→∞

„
x(t, x0, t0)− γ1(t)

«
= 0, ∀ x0 < 0, t0 ∈ IR, (18)

lim
t→∞

„
x(t, x0, t0)− γ2(t)

«
= 0, ∀ x0 > 0, t0 ∈ IR, (19)

but they are not asymptotically pullback attracting. We will loosely refer to t∗ as the transition
time, since it corresponds to the boundary of the pullback stability of the trivial solution.

In figure 3 we analyse the phase-space geometry of the flow (1) with σ(t) given by

σ(t) =
1

π/2 + 0.8

„
atan(10(t+ 4)) + 0.8

«
, (20)

which satisfies the constraints characteristic of this scenario and changes sign at t∗ ≈ −4.105.
Moreover, such a choice introduces an additional simplification to the problem, making it
asymptotically autonomous. This configuration makes it easier to observe the emergence of
an ‘attracting’ structure developing around the trajectories γ1,2(t) after the transition (see
figure 3). The FTLE fields, λT , shown in figure 3(b-e) are computed using (4) and (5) at four
different times and over different time intervals of length T . The examples of the backward
FTLE fields, computed at (b) t = 5 and (c) t = −8 highlight some typical characteristics of
this technique when applied to flows with transient phenomena. When computed at times
after the transition (as in (b)) over sufficiently short time interval lengths T , the maxima of the
FTLE fields coincide well with the location of the distinguished trajectories (dashed blue lines
in figure 3(b)). Note, however, that for sufficiently large values of T the maxima of the FTLE
fields detect ‘ghosts’ (red) of the past stability of the trivial solution and not the situation at
the time of computation t. It is worth remembering here that while the geometry of the flow
trajectories and the transition time is known in the considered example, it may not be at all
obvious what length of the time interval one should choose when computing FTLE fields for a
realistic, higher-dimensional geophysical flow. A similar problem might occur when trying to
identify structures characterised by trajectory separation in forward time via the computation of
forward FTLE fields. We show examples of such computations for the same flow in figure 3(d,e)
which are computed at (d) t = −12 and (e) t = 0 with different values of the parameter T .
As already mentioned above, the trivial solution x = 0 is asymptotically pullback attracting at
any t contained in I = (−∞, t∗−], t∗− < t∗ ≈ −4.105. Therefore, no trajectory separates, in the
sense (7), from the trivial solution on I. The FTLE fields computed in figure 3(d) correspond to
such a situation. However, if one computes the forward FTLE fields at t = −12 for sufficiently
large T a sharp positive maximum appears which might be interpreted as a ‘premonition’ of
the future (finite-time) stability properties of the trivial solution after the transition.

Scenario (III): σ(t) > 0 for t ∈ [t∗, t∗∗], and σ(t) < 0 ∀ t ∈ (−∞, t∗] ∪ [t∗∗,∞].
In this configuration the trivial solution is the only ‘distinguished’ one. It is globally asymp-

totically pullback stable on any time interval I = (−∞, t∗−], t∗− < t∗, i.e.

lim
t0→−∞

x(t, x0, t0) = 0, ∀ t ∈ I, x0 ∈ IR, (21)

and is globally asymptotically stable on any time interval I = [t∗∗+ ,∞), t∗∗+ > t∗∗, i.e.

lim
t→∞

x(t, x0, t0) = 0, ∀ t0 ∈ I, x0 ∈ IR. (22)

However, it can be easily verified by examining (2) that x(t) = 0 is unstable, in the sense of
condition (7), on any time interval contained in I = [t∗, t∗∗].

In order to illustrate the typical properties of the FTLE field in such a case we choose the
time dependence in the following form

σ(t) = 2

„
e−t

2/16 − 0.4

«
, (23)

so that t∗ ≈ −3.83 and t∗∗ ≈ 3.83. In figure 4 we examine the backward (b,c) and forward
(d,e) FTLE fields for this flow configuration, which are computed for different lengths, T , of
the time test interval. The trivial solution is unstable on any time interval contained (in this
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Figure 4: (b-d) 1D FTLE fields, λT (x, t0), for the flow (1) with σ(t) given by (23) which is characteristic of
Scenario III discussed in §3.1.The trivial solution, x = 0, is asymptotically attracting on the time interval I = IR and
globally pullback stable (see (21)) on any time interval I = (−∞, t∗−], t∗− < t∗ (in this case t∗ ≈ −3.83; see text).
The trivial solution is unstable on any time interval contained (in this case) within I = [−3.83, 3.83]. (b-c) Backward
FTLE field computed, using (4) and (5), at (b) t = 3 and (c) t = 8 with different values of the integration parameter
T . Note that the maxima of the FTLE fields (i.e. the LCS) vary with T and, for sufficiently large T , the FTLE
fields detect a ‘ghost’ of the past attracting phase of the trivial solution x = 0 (red curves in (b-c)). See text for a
discussion. (d-e) Forward FTLE field computed for the same flow at (d) t = −8 and (e) t = 0 with different values of
the parameter T . Note that at t = −8 (d), when x = 0 is attracting and globally pullback attracting, the FTLE field
computed over sufficiently long interval T detects a ‘premonition’ of the future unstable phase of the trivial solution.

case) within I = [−3.83, 3.83]. The backward FTLE fields, λT (x, t0), computed at t = 3 show
a similar behaviour as in figure 3(b) except that the magnitude of ‘ghost’ maximum (red),
indicating the past attracting properties of the trivial solution, is similar to those computed
for T = −5 and T = −10. This simple example indicates the possible problems with inter-
pretation of the families of FTLE fields at time t, {λT (x, t)}T+t∈I , and the right choice of the
time integration interval best describing the flow structure at the given time t. The forward
FTLE computations reveal similar ambiguities when trying to detect structures characterised
by separating trajectories in forward time. The FTLE field computed at t = −8 (d) with T = 2
indicates correctly the lack of trajectory separation points. The profile of λ10(x, t = −8) is,
however, rather broad and one might be tempted to increase the integration time interval T
in order to obtain a more localised profile. If one then computes the forward FTLE field at
t = −8 with T = 10, the λ10(x, t = −8) reveals a positive maximum at x = 0 (red curve in
(d)) which indicates that the perturbations of the trivial solution will eventually separate with
a positive λT . It is important to understand here that this is not an erroneous result. Indeed,
we know that the trivial solution is unstable on the time interval I = [−3.83, 3.83] and if one
follows trajectories from t = −8 to a time contained within this interval this is certainly what
is going to happen. Moreover, if we follow such trajectories to times beyond I, the positive
maximum disappears again (e.g. λ20(x, t = −8) in figure 4d). An important question arises in
connection to this: Which FTLE fields from the T -parametrised family {λT (x, t)}T+t∈I , best
describes the flow structure at t and how do we recognise that it is not always the field with
sharpest maxima?

3.2 Two-dimensional, time-dependent flows

In the reminder of this paper we consider 2D flows which are defined analytically so that there
is no additional ambiguity with data handling. In each case we determine the stable and
unstable manifolds of Distinguished Hyperbolic Trajectories and compare the results with the
LCS identified from the FTLE maps.
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3.2.1 Two examples of dynamical systems where the Lyapunov exponents
of every trajectory are equal

In this section we point out two situations where the Lyapunov exponents of every trajectory
are equal. Interestingly, the two flows are, in some sense, almost exact opposites in terms of the
complexity of the dynamics that they exhibit. The first example is the velocity field due to a
linear, time-dependent straining flow defined on the plane. In this case we can compute the form
of the Lyapunov exponents explicitly, and as a result it is evident that the Lyapunov exponents
do not depend of the initial condition of the trajectory, which implies that they are identical for
all trajectories. In this case the FTLE field reveals no LCS’s, for any time over which the FTLE
field is defined. The second example is the Arnold cat map, defined on the torus (i.e. doubly-
periodic boundary conditions). It is a linear map, defined on a nonlinear, bounded phase space
(i.e. the torus). The Lyapunov exponents for every trajectory can be computed explicitly, and
linearity of the map implies that all exponents are equal. Hence, also in the Arnold cat map
case the FTLE fields reveal no LCS’s. Contrasting these two examples is interesting. Neither
example has LCS’s as diagnosed by the FTLE field (although the phase space of each does
have hyperbolic trajectories with stable and unstable manifolds), and the velocity field given
by the linear, time-dependent straining flow has ”simple” trajectories, while the trajectories
exhibited by the Arnold cat map are ”extremely” chaotic. We will now describe each of these
examples in more detail, and in the process provide more background and justification for these
statements.

Linear, time-dependent strain: We consider here the simplest class of incompressible
2D flows, defined for all t ∈ IR, which possess a DHT in the sense of [45]. The flows are trivial,
time-dependent extensions of the linear steady strain and the corresponding non-autonomous
dynamical system is given by»

ẋ
ẏ

–
= A(t) ·

»
−1 0
0 1

–
·
»
x
y

–
, (24)

where A(t) is a time-dependent strain amplitude. When A = const., the point (x, y) = (0, 0) is
a hyperbolic saddle with a 1D stable and unstable manifolds aligned with, respectively, ex and
ey. When dA/dt 6== 0 and A(t) > 0, it can be easily verified that γγγ(t) = 0 is a trajectory of
(24) in the extended phase space (x, y, t). Moreover, γγγ(t) is hyperbolic and has a 2D stable and
unstable manifolds in the extended phase space which are spanned by, respectively,

˘
ex, et

¯
and

˘
ey, et

¯
. The fundamental solution matrix, X(t, t0), of (24) is given by

X(t, t0) =

"
−eÃ(t,t0) 0

0 eÃ(t,t0)

#
, (25)

where Ã(t, t0) =
R t
t0
A(τ)dτ .

Note that the finite-time Lyapunov exponents, λ1,2 (cf Definition A.1), for the flow associ-
ated with (25) are given by

λ1,2
T (x, y, t0) = ±Ã(t0 + T, t0)

2|T | , (26)

and are independent on the spatial coordinates. Consequently, the FTLE field given by
λT (x, y, t0) = max

ˆ
λ1(x, y, t0), λ2(x, y, t0)

˜
is spatially homogeneous and does not reveal any

structure despite the fact that the stable and unstable manifolds of the hyperbolic trajectory
γγγ(t) = 0 are well defined.

The Arnold cat map: The Arnold cat map, defined on the torus, is given by

pn+1 = pn + qn (mod 1), (27)

qn+1 = pn + 2qn (mod 1), (28)

This dynamical system has a number of remarkable properties that are amenable to explicit
analysis resulting from the linearity of the map and the doubly periodic boundary conditions.
In particular, every trajectory can be shown to be hyperbolic and explicit expressions for its
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Figure 5: Geometry of two material surfaces in the extended space (x, y, t) approximating the unstable manifold
(red) and the stable manifold (blue) of the trivial solution, xxx(t) = 0, of the system (30). For the chosen form of the
amplitudes AS , AV (cf (45)), the trivial solution is (infinite-time) hyperbolic on I = R but finite-time hyperbolic

only on I = (−∞,−4.47] and I = (4.47,∞] (see text for definition of finite-time hyperbolicity on an interval).

stable and unstable manifolds can be computed. The map can be shown to be ergodic, mixing,
and to have the Bernoulli property, and each of these properties is present on the entire domain
of the map. The proofs of these results are ”well-known”, but are often difficult to track down
in the literature. [80] contains proofs, and also a guide to the original literature. However, for
our purposes here we are only concerned with the Lyapunov exponents of trajectories of the
cat map. These can be explicitly computed from the map and are found to be

Λ1,2 = ± ln(3 +
√

5)/2, (29)

and they are the same for every trajectory. Therefore, we have a situation where, in some sense,
the map is the “most chaotic possible” (i.e. it has the Bernoulli property) on its entire domain
and every trajectory is hyperbolic (having one Lyapunov exponent with modulus greater than
one and one Lyapunov exponent with modulus less than one) with stable and unstable manifolds
that can be computed explicitly. Nevertheless, since the Lyapunov exponents of every trajectory
are identical then contours of the FTLE fields are all identical, and this they reveal no LCS’s5.

Summary: We have shown two examples where the Lyapunov exponents can be explicitly
computed for every trajectory. In each example the Lyapunov exponents were shown to be
identical for every trajectory. Dynamically, these two examples could not be more different.
The flow defined by a linear, time-dependent strain on the plain does not possess complex
dynamics, even though (almost) every trajectory has a positive Lyapunov exponent. The
Arnold cat map defined on the torus is extremely chaotic on its entire domain (and every
trajectory also has a positive Lyapunov exponent). Clearly, complexity of trajectories is not
sufficient for the FTLE field to reveal “structure”. Rather, spatial heterogeneity is required,
and this does not occur for linear flows, or flows exhibiting ‘uniform’ chaos, in the sense of
identical Lyapunov exponents for (almost) every trajectory.

5This paper is concerned with an understanding of the role of manifolds and LCSs in fluid transport. Consequently
we have been dealing with flows that are defined for continuous time. The Arnold cat map is a discrete time dynamical
system. We have chosen it to illustrate a specific point because of its familiarity, and the ease for which its various
properties can be explicitly computed. Nevertheless, the Arnold cat map dynamics can be realized in continuous
time flows; see [11, 12, 71] for details.
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Figure 6: (Left) Geometry (in the extended phase space (x, y, t)) of an unstable manifold of the trivial solution,
xxx(t) = 0, in a flow generated by (30)). (Right) Finite-time Lyapunov exponent fields, i.e. λT (x, y, t) (cf A.2),
computed at three different times during the evolution t = 5 (top row), t = 7 (middle row), t = 13 (bottom row); for
each of these times the FTLE fields were computed over two time intervals of different lengths T . The green lines
denote the instantaneous geometry of the unstable manifold. When computed over sufficiently long time intervals,
the ridges of the backward FTLE fields coincide with the unstable manifold.

3.2.2 Strain-vortex-strain transition

We consider here an example which is designed to illustrate the geometry and fate of finite-
time stable and unstable manifolds of a finite-time hyperbolic trajectory during a flow transition
associated with a loss and subsequent re-gain of finite-time hyperbolicity by this trajectory. We
show here what kind of information about transport properties of such a flow can be obtained
by analysing this transition using, respectively, the invariant manifold approach and the FTLE
approach.

Consider the following two-dimensional, non-autonomous dynamical system

ẋxx =

„
AS(t)SSS(xxx) +Av(t)V(xxx)

«
e−||x

xx||2/δ2 , xxx ∈ IR2, t ∈ IR, (30)

where δ is a constant and the terms in the brackets represent a linear superposition (with
time-dependent coefficients AS(t) and AV(t)) of a straining field given by

SSS(xxx) =

»
−x
y

–
, (31)

and of a vector field with circular streamlines given by

V(xxx) =

»
−y
x

–
. (32)

Before proceeding to a discussion of concrete examples derived from (30), it is instructive
to analyse the finite-time stability properties of the trivial solution, xxx(t) = 0. Some specific
examples are discussed in the following subsection.

Stability of the trivial solution, xxx(t) = 0.
The linearisation of (30) about xxx(t) = 0 is given by

ẋxx = Â(t)xxx =

24 −AS(t) −AV(t)

AV(t) AS(t)

3524 x

y

35 . (33)
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Figure 7: Comparison of the 1D sections (along (x, y = 0)) of the backward FTLE fields (gray-shaded) computed
for the flow (30) and discussed in figure 6. Three 1D sections of the FTLE map computed at (a) t = 7 and (b)
t = 5 over different integration intervals T . Note that the number of maxima and their location varies with T .
In particular, the nature of the extremum at x = 0 in the FTLE maps switches between minimum and maximum
depending on T . The location of the finite-time unstable manifold of the (finite-time) hyperbolic trajectory x(t) = 0
coincides, in this case, with the strongest maxima of the FTLE fields computed for T = 20. However, this fact can
be only established once the finite-time unstable manifold is computed.

Consider first a class of flows generated by (33) for which the coefficients, AS(t),AV(t) > 0,
satisfy

AV(t) > AS(t), for t ∈ [t∗, t∗∗], −∞ < t∗ < t∗∗ <∞,

AV(t) < AS(t), for t ∈ (∞, t∗) ∪ (t∗∗,∞).

9=; (34)

In such a case, it can be shown that the trivial solution, xxx(t) = 0, t ∈ IR, has codimension-one
unstable and stable manifolds6 in the extended phase space (xxx, t). Consequently, it can be
shown that the trivial solution is hyperbolic on IR in the classical, infinite-time sense. How-
ever, if we consider the finite-time stability properties of the trivial solution, some interesting
issues arise. We note here that the theory of finite-time stability of non-autonomous dynami-
cal systems is still an area of active research and, as a consequence, there exist, for example,
at least two different ways of defining what is meant by finite-time hyperbolicity (cf Defini-
tions A.4 and A.11 in the Appendix A). Although, it is currently not clear if these two notions
are equivalent, or which one is more suitable for a given application, we show below that they
predict essentially the same stability changes in the configuration considered here.

As discussed briefly in the Appendix A, one approach to characterising finite-time stability
properties of a given trajectory is via the notion of finite-time exponential dichotomy which
is associated with a system linearised about this trajectory. While this notion of finite-time
hyperbolicity seems more general and is very useful in more abstract considerations, it is often
difficult to verify in practice. Nevertheless, provided that AV(t) and AS(t) are bounded and

6We skip the proof here but the existence of the ‘infinite-time’ stable and unstable manifolds of the trivial solution
of (33) can be shown by using techniques analogous to those used in [54, cf §4]. The main difference here is the presence

of the off-diagonal terms in Â (cf (33)) which invalidates the contraction mapping argument when AV(t) > AS(t).

However, one can show the existence of a codimension-one manifold of trajectories on I = (−∞, t∗) which converge
to xxx = 0 as t → −∞, In the linear case of (33) these solutions can be extended to I = (t∗,∞) with the help of the
fundamental solution matrix. Similar procedure can be used to show existence of trajectories of (33) on I = (t∗∗,∞)
converging to xxx = 0 as t→∞, and then mapping them backwards using the fundamental solution matrix.
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Figure 8: A sequence of backward FTLE fields (grey/red shaded), λT (x, y, ti), {ti}i∈Z (cf A.2), for the flow (30)
with AS = 1 and AV(t) given by (46). The FTLE fields are computed with |T | = 10. The flow undergoes a

transition associated with the loss of finite-time hyperbolicity by the trivial solution. The dashed green lines denote
the instantaneous geometry of a material curve which approximates the finite-time unstable manifold of xxx(t) = 0
before the transition (After the transition the trivial solution does not have ft unstable manifold but this curve
remains a material transport barrier in the flow.) Note that, when computed with a fixed T , the ridges of the FTLE
field fade away during the evolution as the flow transitions into the ‘non-hyperbolic’ phase.

sufficiently slowly varying on a time interval I, it can be shown [19, Propositions 1-2, p. 50]
that the trivial solution is finite-time hyperbolic on any time interval J ⊂ I within which the
real parts of the eigenvalues of the matrix Â(t) in (33) are non-zero and have opposite signs.
Conversely, it can also be shown [19, Proposition 2, p. 54] that a trajectory cannot be finite-
time hyperbolic if the eigenvalues of Â(t) are imaginary over a sufficiently long time interval
(the slower the variation of the coefficient matrix, the longer time interval needed). Since the
eigenvalues of the matrix in (33) are given, at any t ∈ IR, by

σ(t)1,2 = ±
q
AS(t)2 −AV(t)2, (35)

one can conclude that, if AS and AV satisfy (34) and I = [t∗, t∗∗] is sufficiently long, the
trivial solution is not finite-time hyperbolic on I.

Another approach to characterising the stability properties originates from the so-called
EPH-partition due to Haller (see the Appendix and [38, 28]). This criterion relies upon con-
sidering the characteristics of the so-called rate of strain tensor, Ŝ(t) (cf Definition A.7), and
the strain acceleration tensor, M̂(t) (cf Definition A.9), derived for a flow linearised about the
considered trajectory. In particular, a trajectory is said to be in a hyperbolic region of the
phase space within a time interval I if the restriction of M̂(t) to the so called zero-strain set
(cf Definition A.8) is positive definite for all t ∈ I. In the case of our example system (33), the
rate of strain tensor

Ŝ(t) = 1
2
(A(t) +A(t)T ) =

"
−AS(t) 0

0 AS(t)

#
, (36)

is indefinite for any t ∈ IR, and the zero-strain set, defined as Z(t) =
˘
xxx ∈ IR2 : 〈xxx, Ŝ(t)xxx〉 = 0

¯
is given by

Z(t) =


ξξξ+, ξξξ− ∈ IR2 : ξξξ+ = α

»
1
1

–
, ξξξ− = α

»
1
−1

–
, α ∈ IR

ff
. (37)
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Finally, the strain accelaration tensor is

M̂(t) =
˙̂
S(t) + Ŝ(t)Â(t) + Â(t)T Ŝ(t) = 2

24 AS(t)2 AS(t)AV(t)

AS(t)AV(t) AS(t)2

35 , (38)

and its restriction to the zero-strain set yields

〈ξξξ−, M̂(t)ξξξ−〉 = α2AS(t)
`
AS(t)−AV(t)

´
, (39)

〈ξξξ+, M̂(t)ξξξ+〉 = α2AS(t)
`
AS(t) +AV(t)

´
. (40)

Consequently, the restriction of M̂(t) to Z(t) is positive definite provided thatAS(t)−AV(t) > 0.
If the amplitudes AS(t), AV(t) satisfy (34), one can conclude, that the trivial solution leaves
the hyperbolic region of the phase space at t∗ and is contained in the elliptic region (cf Def-
inition A.10) for t ∈ I = [t∗, t∗∗]. According to Definition A.11, the trivial solution will not
be finite-time hyperbolic on any time interval J ∈ IR such that J ∩ I is sufficiently long (see
Definition A.11 for more details).

Note that both of these characteristics of finite-time hyperbolicity depend on the time
interval considered and cannot be attributed to a point on a trajectory. Rather, whether or
not a given trajectory is finite-time hyperbolic on a given interval, I, depends on the relative
length of subintervals of I within which the local dynamics has ‘undesirable’ properties. In
what follows we will say that a trajectory γγγ is not finite-time hyperbolic on an interval I if
there exists interval(s) J such that J ∩ I 6= ∅ and γγγ is not finite-time hyperbolic on J . Clearly,
if a trajectory γγγ is finite-time hyperbolic on I ∈ IR than it is finite-time hyperbolic on any
J ⊂ I.

Note also that if, instead of (34), the amplitudes were chosen such that

AV(t) < AS(t), for t ∈ (−∞, t∗),

AV(t) > AS(t), for t ∈ (t∗,∞),

9=; (41)

one can only identify6 an unstable manifold, Wu[xxx = 0], in the flow generated by (30). In such
a case <e[σ(t)] = 0 for any t ∈ [t∗,∞] and the trivial solution is not finite-time hyperbolic on
t ∈ [t∗,∞) (i.e. xxx(t) = 0 does not have the exponential dichotomy on [t∗,∞)). Similarly, when

AV(t) > AS(t), for t ∈ (−∞, t∗),

AV(t) < AS(t), for t ∈ (t∗,∞),

9=; (42)

one could only define a stable manifold W s[xxx = 0]. The trivial solution is in this case finite-time
hyperbolic on (t∗,∞) but not on (−∞, t∗).

Note finally that if we restrict the system (30) to a bounded time interval, I = [ta, tb] ⊂ IR,
with ta > −∞, tb < ∞, it is not possible to define7 the stable and unstable manifolds of
the trivial solution (in the classical, time-asymptotic sense) even if xxx(t) = 0 is hyperbolic for
the same system considered on I = IR. This situation is by far the most common one in
applications, especially when dealing with experimentally measured or numerically generated
flows. However, if xxx(t) = 0 is finite-time hyperbolic on I (in the sense of Haller [38]), one can
define (cf [28]) the following two flow-invariant sets: The t-fibre of a finite-time stable set of
xxx(t) = 0 on I is given by

Ws
I

ˆ
xxx(t) = 0

˜
(t) =


xxx ∈ IR2 :

d

dm
‖X(m, t)xxx‖ < 0, m ∈ I

ff
, (43)

and the finite-time unstable set of x(t) = 0 on I is defined, for t ∈ I, as

Wu
I

ˆ
xxx(t) = 0

˜
(t) =


xxx ∈ IR2 :

d

dm
‖X(m, t)xxx‖ > 0, m ∈ I

ff
. (44)

7For systems defined on a finite time interval one can still consider non-unique extensions to I = IR by applying
the Lyapunov-Perron approach to an extension of the flow from I = [a, b] to IR as in [41, 36]. Since such extensions
can be accomplished in a non-unique way, the manifolds constructed in the extended system are unique up to an
error O(e−c(b−a)), c > 0.
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In contrast to the classical (time asymptotic) definition of stable and unstable manifolds, the
finite-time counterparts, Wu

I and Ws
I , have the dimension of the extended phase space (rather

than a lower dimension) and their t-fibres are open sets in IR2. In such a case, a common
approach used in the invariant-manifold Lagrangian transport analysis is to choose (non-unique)
segments of initial conditions of length α � 1, Uαta and Sα

tb , containing the trivial solution of
the linearised system8, and follow their forwards and backward time evolution. It can be shown
(see Appendix B) that, if properly chosen, the material segments are contained in, respectively,
Wu
I

ˆ
xxx(t) = 0

˜
and Ws

I

ˆ
xxx(t) = 0

˜
. Moreover, due to the the embedding property of finite-time

stable and unstable manifolds (see [28, Theorem 37, p. 659]) the effect of the non-unique choice
of the initial material segments diminishes with the length of the considered time interval I,
provided that the considered trajectory is finite-time hyperbolic on I (see the Appendix B for
more details).

Examples of flows generated by the system (30).
In our comparison of the invariant manifold and the FTLE analysis of flows generated by

(30), we first choose the amplitudes AS and AC in such a way that the flow is not finite-time
hyperbolic on a bounded interval; this can be achieved, for example, by setting AS(t) = 1 and

AV(t) =
2

π

„
atan(10− t2/2) + π/2

«
, (45)

in which case t∗ ≈ −4.47 and t∗∗ ≈ 4.47 and the trivial solution is not finite-time hyperbolic
on I = [t∗, t∗∗]. The results to computed for such a flow are discussed in figures 5-7.

In figure 6 we show the geometry of the numerically approximated unstable manifold of the
trivial solution in the nonlinear flow (30) and compare these results with the backward FTLE
fields (cf A.2) at three different times during the evolution t = 13 (top row), t = 7 (middle row)
and t = 5 (bottom row). The unstable manifold was approximated by following an evolution
of appropriately chosen initial material segment (cf Appendix B), using algorithms analogous
to those described in [61, 63]. Clearly, for sufficiently long integration intervals the ridges of
the backward FTLE field coincide very well with the instantaneous geometry of the unstable
manifold (dashed green), as can be seen in the panels computed with T = 20 at three different
times (left column). Note, however, that for smaller values of T not only the ridges of the FTLE
fields become less localised but their location changes as well. This effect is further highlighted
in figure 7 where we show 1D cross sections of the FTLE fields computed for different values
of T . The non-uniqueness of the backward FTLE fields is a direct consequence of the fact that
if one computes separation of nearby trajectories in non-autonomous flows, the outcome will
depend, in general, on the starting time and the extent of the time interval over which such a
diagnostic is evaluated. Therefore, in more complex flows it might be not always clear which
length, T , of the integration interval is the most suitable one for describing the flow structure
based on the FTLE fields. It is also worth noting that in complicated flows, possibly known
on only for a finite time, the identification of Distinguished Hyperbolic Trajectories on a finite
time interval and their stable and unstable manifolds is also not unique, although for different
reasons (see [45] and the discussion following (43), (44)).

We finish this section with an example of a flow associated with (30) with AS(t) = 1 and

AV(t) =
2

π

„
atan(10t) + π/2

«
, (46)

which corresponds to the case (41) mentioned above with t∗ ≈ 0. In figure 8 we consider a
hypothetical situation of trying to record the time-dependent geometry of a transport barrier,
given by the unstable manifold of xxx(t) = 0, using the backward FTLE fields. Note that, as
discussed earlier, the trivial solution is not finite-time hyperbolic on any interval contained in
I = (t∗,∞) and, consequently, it does not have a finite-time unstable (or stable) manifolds
on I. Assume that we choose a time interval length T which leads to well localised ridges in
the backward FTLE fields during the initial period of evolution. In this case |T | = 10 seems
satisfactory for determination of the LCS before the transition. Nevertheless, it can be seen
that the ridge localisation deteriorates in the FTLE fields, λT (x, y, ti), computed at an ordered
sequence of ‘observation’ times {ti}i ∈ Z with increasing ti.

8Note that, by construction, the trivial solution ξξξ(t) = 0 of a system linearised about some trajectory γγγ(t)
corresponds to this trajectory.
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Figure 9: Backward FTLE field (cf A.2) and invariant manifold structure for the double gyre flow (47) in the steady
case. a) The most pronounced ridge of the FTLE map (see b) coincides with the heteroclinic connection between
the two hyperbolic fixed points ppp1 and ppp2. Note that the FTLE field (b) possesses an inward spiraling ridge in each
cell which does not correspond to an invariant manifold. Depending on the characteristics of the colour map, this
spiralling structure can be suppressed. However, in a time-dependent case it is not immediately clear whether or not
similar spiralling ridges correspond to transport barriers.

3.2.3 Double gyre flow

The double gyre flow is considered in the domain D = [0, 2]× [0, 1] and is given by

u(x, y, t) = −πA sin(πf(x, t)) cos(πy), (47)

v(x, y, t) = πA cos(πf(x, t)) sin(πy)
df

dx
, (48)

where f(x, t) is chosen in such a way that f(0, t) = f(2, t) = 0. This flow is frequently used for
illustrating the LCS (e.g. [75, 78]) and it is instructive compare the LCS and stable/unstable
manifolds of hyperbolic trajectories using this example. The (non-autonomous) dynamical
system associated with (47) is simply given by

ẋ = u(x, y, t),

ẏ = v(x, y, t).

)
(49)

When the flow is steady, i.e. when ∂f(x, t)/∂t = 0, there are two hyperbolic stagnation
points in the system (49) located at ppp1(x, y) = (1, 0) and ppp2(x, y) = (1, 1). The unstable mani-
fold of the stagnation point ppp1 coincides with the invariant boundary (x = [0, 2], y = 0) and the
stable manifold is located within the domain. Similarly, the stable manifold of ppp2 is contained
in the flow-invariant boundary (x = [0, 2], y = 1) and its unstable manifold coincides with the
heteroclinic connection between ppp1 and ppp2. When f(x, t) = x the heteroclinic connection is
given by (x = 1, y = [0.1]). The steady situation is visualised in figure 9 where we overlap the
forward FTLE field with the manifold structure associated with the hyperbolic fixed points ppp1,2.
Unsurprisingly, the most pronounced FTLE ridge coincides with the heteroclinic connection
discussed earlier.

When ∂f(x, t)/∂t 6= 0, the paths of instantaneous stagnation points, ppp1(t), ppp2(t), are not
system trajectories. They can, however, be used to compute two Distinguished Hyperbolic
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Figure 10: Backward (a,c) and forward (b,d) FTLE maps for the double gyre flow (47) at t = 0; computed over
two different time intervals with lengths T = 15 (a,b) and T = 20 (c,d), ∆t = 0.01. The parameters ω = 2π/10,
ε = 0.25 and A = 0.1 are chosen as in the online tutorial [75]. The dashed black curves denote the instantaneous
geometry of the unstable manifold (a,c) and of the stable manifold (b,d) of the hyperbolic trajectories γγγ2(t) and γγγ1(t).
For sufficiently long integration times, good agreement between the LCS (red) and the manifolds can be achieved.
However, depending on T the FTLE map reveals ridges of different length and connectivity. Some most significant
differences are marked by the black arrows. The correlation between the LCS and the invariant manifolds depends
also on the integration method, the integration step ∆t (see figure 11).

Trajectories (DHTs, cf Definition A.6, Appendix A) which are contained in the flow-invariant,
top and bottom boundaries. These DHTs can be computed using techniques described in
[45, 63, 61]. We stress again that the path of ISPs is just a convenient but not a necessary
choice of the initial, frozen-time hyperbolic guess. In figure 10 we show examples of backward
FTLE fields (a,c) and forward FTLE fields (b,d) computed at a fixed time, t = 0, over different
lengths of the integration time interval T . We compare these results with the instantaneous
geometry of the unstable manifold of a DHT γγγ2(t) (confined to the top invariant boundary) and
of the stable manifold of a DHT γγγ1(t) (confined to the bottom boundary); the instantaneous
snapshots of these manifolds are delineated by the dashed black curves. In the computations
we used

f(x, t) = a(t)x2 + b(t)x, (50)

a(t) = ε sinωt, (51)

b(t) = 1− 2ε sinωt, (52)

with ω = 2π/10, ε = 0.25 and A = 0.1, which coincides with the choice used in [75]. Since
the flow (47) with f(x, t) given by (50) is time-periodic, both the DHTs and their stable and
unstable manifolds are well defined and unique. Moreover, since these manifolds are composed
of the system trajectories, they represent material curves at any fixed time and are therefore
barriers to transport. It can be seen that in this case the instantaneous geometry of the stable
manifold of γγγ1(t) and the ridge of the forward FTLE map (i.e. the repelling LCS) are well
correlated over long distances (in the arc length sense from the DHT). Similarly, the unstable
manifold of γγγ2(t) and the attracting LCS associated with the backward FTLE map coincide
provided that the FTLE field is computed over sufficiently long time interval. Recall that,
as already mentioned earlier, at each ‘observation’ time the FTLE field, λT (x, y, t), depends
on the integration parameter T . Thus, the arclength of the strongest ridges of the FTLE
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Figure 11: Sensitivity of the FTLE field to the integration method. Forward FTLE computed at t = 0 with T = 15
for the flow (47) using (a) 4th order Runge-Kutta and (b) forward Euler (used in the LCS MATLAB Kit [20]);
∆t = 0.1 in both computations. The fact that the results depends on the integration method and the time step used
are hardly surprising. However, it is important to bear these effects in mind, especially when analysing experimental
data (recorded on a discrete space-time grid) when one does not have the control over the choice of the discretisation
(see also figure 14).

field and, more importantly, the location of these ridges varies with T . This can be seen in
figure 10(c,d) which is computed for the same values of the flow parameters as in figure 10(a,b)
but for T = ±20. Note, in particular, the changes in the FTLE fields occurring in the regions
indicated by the arrows.

Another interesting aspect related to the FTLE computations is the identification the LCS
(i.e. the ridges of the FTLE fields) and their connectivity. The ridge extraction was described
in [78] and an example of the use of such a procedure can be found in [64, Figure 2]. However,
it seems that such a ridge extraction is not commonly carried out. We note, for example, that
the results discussed in [76, 77, 75] and some results in [78] seem to be obtained not by ridge
extraction but by appropriate ‘thresholding’ of the colour map used for shading the FTLE
fields. In figure 12 we show a few examples of different shading of the same FTLE field which
reveal a ‘ridge landscape’ of varying complexity with a number of disconnected ridges appearing
(or disappearing), depending on the colour map threshold used.

In summary, we observe a good correlation between the stable and unstable manifolds of
DHTs and the ridge segments identified in the forward/backward FTLE fields in this flow.
However, for a given FTLE field, the choice of the parameters T and the filtering applied
to extract the LCS is rather subjective and can be ambiguous. This is of particular concern
when analysing transport in time-dependent flows via the lobe dynamics. Lagrangian transport
analysis via the lobe dynamics requires the ability to follow the evolution of lobes associated
with tangles of stable and unstable manifolds of relevant hyperbolic trajectories. Any numerical
technique for identifying these tangles will provide, at best, a good approximation of these
structures. However, the minimum requirement for this kind of analysis is that the numerical
method has to be capable of identifying evolution of the same, and sufficiently long, segments
of such structures. If the structure of the relevant stable and unstable manifolds of DHTs is
known, it is generally possible to adapt T and the colour map ‘threshold’ so that sufficiently
long and connected LCSs are revealed. However, if the manifolds structure is not known a
priori, this task may quickly become impossible. We also note that, while the methods based
on computation of stable and unstable manifolds are capable of identifying and following in
time long segments of hyperbolic structures, the necessary identification of the ‘distinguished’
hyperbolic trajectory is not always easy. Thus, it is likely that a synergetic approach, combining
the use of FTLEs for identifying the possible locations of the DHTs with a subsequent manifold
computation, may offer the right way forward.

3.2.4 Time-dependent Hills’ spherical vortex in the symmetry plane

Consider now a class of velocity fields obtained by perturbing the well known steady solution
of equations of an inviscid incompressible fluid flow given by the Hill’s spherical vortex (see,
for example, [7]). The Hill’s vortex flow, HHH, is then perturbed by a time-dependent strain, SSS,
so that the corresponding dynamical system is given by

ẋxx = HHH(x, y, z) +SSS(x, y, z, t). (53)
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Figure 12: When shading the FTLE fields one has to make a choice of a filtering threshold in order to reveal the
ridges approximating the LCS (backward FTLE field at t = 0 computed for T = −20 shown). Different choices of the
colour mapping, which serves here a height filter, may reveal or suppress disconnected segments of LCS. This effect
combined with the non-uniqueness of the FTLE maps (i.e. the one-parameter family {λT (x, y, t)}t+T∈I) makes it
difficult to identify long segments of the LCS which are necessary for transport analysis via the lobe dynamics.

The components of the steady Hill’s vortex in Cartesian coordinates are

Hx = (ur sin Θ + uΘ cos Θ) cos Φ,

Hy = (ur sin Θ + uΘ cos Θ) sin Φ,

Hz = (ur cos Θ− uΘ sin Θ),

9>>=>>; (54)

where r =
p
x2 + y2 + z2, Θ = acos(z/r), Φ = acos(x/

p
x2 + y2) and, assuming that a denotes

the radius of the vortex, the velocity components in the spherical coordinates are

ur =

8<: U(1− a3/r3) cos Θ if r > a,

− 3
2
U(1− r2/a2) cos Θ if r < a,

(55)

uΘ =

8<:−U(1 + a3/(2r3)) sin Θ if r > a,

3
2
U(1− 2r2/a2) sin Θ; if r < a.

(56)

This unperturbed (steady) Hill’s vortex flow has two hyperbolic stagnation points

h1 = (0, 0,−a)T , h2 = (0, 0, a)T , (57)

which are located on the (flow-invariant) axis of symmetry eeez of the vortex. The fixed point
h1 has a two-dimensional unstable manifold in IR3 (1D in any symmetry plane containing eeez),
and the fixed point h2 has a two-dimensional stable manifold in IR3.

The perturbing, time-dependent straining flow is given by

SSS = A(t) ·

24 α(t) 0 0
0 β(t) 0
0 0 γ(t)

35 ·
24 x
y
z

35 , (58)
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Figure 13: Schematic representation of a three-dimensional flow used in computations of invariant manifolds
and FTLE fields in §3.2.4. The steady Hill’s spherical vortex (a), sketched in a symmetry plane, is perturbed
by a time-dependent strain (b). One of the principal axes of the straining flow is aligned with the axis of
symmetry of the Hill’s vortex, eeez. The amplitude of the strain changes with time as shown in c).

whereA(t) is a time-dependent amplitude, the strain rates are normalised so that max(α, β, γ) = 1
and they satisfy α+ β + γ = 0.

When 0 < A � 1 the fixed points h1 and h2 no longer exists but they are perturbed to
two hyperbolic trajectories, γγγ1(t) and γγγ2(t), which possess, respectively, a 3D unstable and 3D
stable manifolds in the extended phase space spanned by

˘
eeex, eeey, eeez, eeet

¯
. In other words, at

any fixed time instant the unstable manifold of γγγ1(t) and the stable manifold of γγγ2(t) are given
by surfaces embedded in IR3.

As long as one of the axes the perturbing straining flow (58) is aligned with the symmetry
axis of the Hill’s vortex, the flow (53) remains axisymmetric. Consequently, every plane con-
taining eeez is invariant with respect to the flow (53), with HHH given by (54) and SSS given by (58).
We therefore restrict the analysis to one such symmetry plane, namely (x = 0, y, z), in which
the instantaneous geometry of the considered invariant manifolds is given by curves.

The hyperbolic trajectories, γγγ1(t) and γγγ2(t), which are confined to the symmetry axis,
ez, can be computed using the same algorithms (cf [45, 50]) as used in the previous examples.
Their stable and unstable manifolds are computed as in the previous examples using techniques
described in [63, 61] with the initial ‘seed’ for these computations chooses in the way described
in Appendix B. In figure 14 we compare the instantaneous geometry of the unstable manifold
of γγγ1 with the corresponding backward FTLE field, both computed in the symmetry plane for
the flow associated with (53) with the perturbing strain amplitude given by

A(t) = (0.05 + 0.3 sin(2.33t))e−(t−1)2/(3.5)2 . (59)

The strain rates are chosen as α = β = −0.5, γ = 1. The conclusions one may draw from these
computations are similar as those drawn from the previous examples. Provided that the FTLE
fields are computed with sufficient care the overall agreement between the ridges of the FTLE
field (red) and the unstable manifold is rather striking (cf figure 14(a)). As in the previous
examples, the critical parameters for an accurate manifold computation are the maximum and
minimum curvature cut-off parameters and accurate integration routine.

However, we intend to use this flow geometry to alert the reader to the potential problems
which are particularly likely to appear when analysing experimentally measured flow fields or
velocities obtained from numerical PDE solvers.

In order for the FTLE computations to be reliable, one needs to make sure that the com-
putational grid is sufficiently refined to reveal the desired details and, most importantly, that
the integration routine is chosen appropriate for the chosen integration time step. Obviously,
in the case of analytically defined flow fields, as the ones we are dealing with here, the choice
of the integration time step is not a serious constraint. However, in the case of discrete data
sets (numerical or experimental) the time-discretisation of the data set imposes limitations on
∆t, requiring a trade-off between the time step chosen and the temporal data interpolation.
In order to highlight, the kind of problems one might encounter in such a situation we show,
in figures 14(c,d) results of the FTLE computations for the same flow as in figures 14(a,b)
but using the first-order accurate forward Euler integration method. This method is in fact
implemented in the LCS MATLAB Kit mentioned earlier [20] which is combined with linear
spatial interpolation of the discrete flow data required by the code. Note, in particular the
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Figure 14: Comparison of the backward FTLE fields, λT (x, y, t) (cf A.2), computed with T = −15
in a symmetry plane for the axisymmetric, time-dependent, perturbed Hill’s vortex flow (53) at
t = 0, and the instantaneous geometry of the unstable manifold of the hyperbolic trajectory γγγ1(t)
(see §3.2.4). The top row shows the FTLE fields computed using 4th order Runge-Kutta with a)
∆t = 0.01 and b) ∆t = 0.1. The bottom row shows analogous computations performed using the
forward Euler method (as in [20]) with c) ∆t = 0.01 and d) ∆t = 0.1. Provided that an appropriate
method is used for the integration of trajectories (i.e. not the forward Euler) a good agreement can
be achieved (cf (a)) between the LCS computations and the invariant manifolds computations.
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erroneous structures in figure 14(d) which emerge in the FTLE fields computed using the for-
ward Euler integration method with ∆t = 0.1. The main danger here is associated with the
main advantage of the FTLE computations. Namely, it is straightforward to develop a basic
algorithm computing FTLE fields which will generate reasonably looking output.

3.2.5 Boundary layer separation on a non-slip boundary

The technique of invariant manifolds and lobe dynamics for finite-time, aperiodically time-
dependent velocity fields has not been extensively developed. An important area of application
in this setting is separation from a non-slip boundary. In this setting Haller and co-workers
have developed a comprehensive theory based on the FTLE and LCS approach [84, 40, 2,
81, 82]. Related earlier work using non-hyperbolic separation points and manifolds can be
found in [79, 27, 87, 33]. Nevertheless, there has been extensive work in the mathematics
literature on non-hyperbolic trajectories and their stable and unstable manifolds, e.g. [65, 16,
30, 17, 15, 5, 10, 44, 6]. This work should serve as an excellent foundation for developing a
theory of ‘distinguished saddle-points’ and their stable and unstable manifolds in finite time,
aperiodically time-dependent velocity fields. Finally, we note that the algorithm for computing
time-dependent invariant manifolds described in [63, 61] does not require a hyperbolic trajectory
as a starting point. Rather, it requires an appropriate ‘seed’ from which the material curve,
approximating an invariant manifold is ‘grown’ according to the numerically integrated vector
field. Depending on the choice of the ‘seed’, the obtained results may, or may not, be relevant
for transport considerations. Instead of selecting the location of some distinguished hyperbolic
trajectory as the ‘seed’, one could choose the instantaneous location of a non-hyperbolic saddle
point. However, this situation has yet to be developed.

3.2.6 Eddy-pair system

In this example we focus on a flow exhibiting a transition between a configuration characterised
by a single Lagrangian eddy and an eddy pair. This is a simplified version of the kinematic
model of the front-eddy system introduced earlier in [13]. As in all other examples in this
section, our main objective is to establish how well the LCS, represented by ridges of the
FTLE fields, correlate with invariant stable and unstable manifolds of DHTs in aperiodically
time-dependent flows.

The flow considered here is chosen in such a way that it undergoes a transition from a
single Lagrangian eddy configuration to an eddy-pair configuration. The streamfunction of the
kinematic model we use in our analysis is given by

ψ =M(t) +A1(t)e−
`

(x−x1(t))2+(y−y1(t))2
´
/δ21(t) +A2(t)e−

`
(x−x1(t))2+(y−y1(t))2

´
/δ22(t), (60)

where
M(t) = L(t)− α(t)

`
x cos θ(t)− y sin θ(t)

´2
+ β(t)

`
x sin θ(t) + y cos θ(t)

´
, (61)

and L = −1, α = 0.08, β = 1, θ = −π/4. The second and the third term in (60) give rise, for
appropriate values of the amplitudes A1 and A2, to the appearance of closed contours in the
instantaneous streamline patterns. We refer to such patterns Eulerian eddies. We choose here
A1 = 10, δ1 = 4, x1 = y1 = 4, x2 = y2 = 0, δ2 = 0.9 and the time-dependent amplitude of the
second Eulerian eddy as

A2(t) = −2/π
`
atan(t− 1)− atan(−9)

´
. (62)

With the above choice of the amplitudes A1 and A2 the flow is aperiodically time dependent
and asymptotically steady, so that the two DHTs approach the location of the single fixed point
in the system for t→ −∞ and two fixed points at t→∞. The DHTs are again computed using
the MATLAB implementation of the techniques introduced in [45, 49], and their manifolds are
computed using the ideas based on [63, 61].

Figure 15 shows the backward and forward FTLE fields (yellow/red shades, see Defini-
tion A.2) computed for the flow (60) at t = 0, and stable (blue and cyan) unstable (magenta)
manifolds of the two DHTs present in the flow. The location of this ‘observation’ time relative
to the geometry of the DHTs is shown in the top left panel. The top right panel shows the
backward FTLE map computed with T = 25 and an unstable manifold (of the two DHTs, they
are extremely close if not identical). Clearly, the attracting LCS, corresponding to the ridge
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of the backward FTLE field, and the unstable manifolds of the two DHTs correlate very well
over long arclength distances from the DHTs (black dots). The bottom panel shows a compar-
ison between the stable manifolds (blue and cyan) of the DHTs and the forward FTLE map,
showing a good agreement. Note also the spiral structure in the forward FTLE map (bottom)
which is visible inside the small eddy. When computed over long time intervals the length and
definition of the extracted ridges might increase (see, however, §3.1) but the method starts
detecting ’premonitions’/’ghosts’ of the future/past phase space geometry. Note also that the
significant inward curl of the LCSs inside the large eddy in both forward and backward FTLE
fields which does not correspond to the manifold geometry.

We show two more snapshots of the instantaneous geometry of the FTLE fields and the
stable and unstable manifolds of the DHTs at t = −4 (figure 16), and at t = −8 (figure 17).
In all cases the agreement between the dominant FTLE ridges and the corresponding stable
or unstable manifolds of the DHTs is good, provided that the FTLE fields are computed for
sufficiently large T .

3.2.7 Eddy-quadrupole system

In this final example we focus on an incompressible flow characterised by the following stream-
function

ψ(x, y, t) =

„
xy
`
σ(t)− x2´− αxy3 + βxy5

«
e−(x4+y4)/δ4 , (63)

where σ(t) is some function of time and α, β, δ are constants. The dynamical system associated
with the flow is given by

ẋ = ∂ψ/∂y, ẏ = −∂ψ/∂x, (x, y) ∈ IR2, t ∈ IR. (64)

We will choose here a particular form of time-dependence which will induce a symmetric tran-
sition of the flow associated with (64) from a four-eddy configuration to an eight-eddy config-
uration (see figure 18). We use this setting to illustrate two issues affecting, respectively, the
invariant manifold computations and the FTLE computations. Due to the type of transition
considered here we are not able to identify DHTs throughout the time interval considered. The
problem affecting the FTLE computations stems again from their non-uniqueness and the fact
that, in this case, the FTLE fields computed for longer integration times show less pronounced
ridges, detecting ghosts of pre-transition flow characteristics.

After a bit of algebra, one may notice that (64) has two invariant lines given by y = 0 and
x = 0. Alternatively, in the extended phase space one may identify two invariant planes

Ix = {(x, y, t) ∈ IR2 × IR : y = 0}, Iy = {(x, y, t) ∈ IR2 × IR : x = 0}. (65)

Note further that the dynamics in Ix is given by

ẏ = 0, ẋ = x
`
σ(t)− x2´e−x4/δ4 = x

`
σ(t)− x2´+O(x5), (66)

and the dynamics in Iy is given by

ẋ = 0, ẏ = −y
`
σ(t)− αy2´e−y4/δ4 = −y

`
σ(t)− αy2´+O(y5). (67)

Clearly, we already analysed this type of one-dimensional dynamics in §3.1. In this example
we will only consider the time-dependence that corresponds to Scenario II discussed in §3.1,
i.e. we choose

σ(t) = 2
`
atan(10t) + π/2− 1

´
; (68)

the remaining parameters in (63) are α = 1/3, β = 0.008/5 and δ = 5.
With σ(t) given by (68) so that σ(t∗) = 0 at t∗ ≈ 0.0642, one can easily see that within

the plane Ix the trivial solution, x(t) = 0, of (64) is pullback attracting (cf (14) and [55]) on
I = (−∞, t∗) and that it is repelling (in the sense of (7)) on I = (t∗,∞). If we consider the
dynamics within the invariant plane Iy, the trivial solution is repelling on I = (−∞, t∗) and
it is forwards attracting (cf (12) and [55]) on I = (t∗,∞). Consequently, while xxx(t) = 0 is not
hyperbolic on IR (in the traditional, inifinite-time sense) it is certainly finite-time hyperbolic
on any time interval which does not contain t∗. Moreover, while for J ⊂ (−∞, t∗) any finite-
time unstable manifold of xxx(t) = 0, i.e. Wu

J [xxx(t) = 0] (cf Appendix B and §3.2.2), contains
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Figure 15: FTLE fields (yellow and red shades, cf A.2) and stable/unstable manifolds of two DHTs (black) computed
in the flow (60) at t = 0 (see (a)) during a transition between the singe-eddy and eddy-pair configuration (see the
figures 16, 17 for the geometry at earlier times). (b) backward FTLE field, computed with T = −25, superimposed
with the unstable manifolds (dashed black) of the two DHTs (black dots); the LCS are delineated by the red ridges of
the FTLE map and were enhanced by appropriate filtering of the colour map. (c) the forward FTLE field (yellow/red
shades), computed with T = 25, superimposed with the stable manifolds (cyan/blue) of the two DHTs (black dots).
The manifold segments inside the black rectangle were removed in order to reveal the LCS underneath. When
computed over sufficiently long time intervals, the length and definition of the strongest ridges (LCS, red) of the
FTLE maps generally increases (see, however, §3.1) but the method starts detecting ’premonitions’/’ghosts’ of the
future/past phase space geometry. Note, in particular, the spiral structure inside the small eddy visible in the forward
FTLE map (c). Note also a significant inward curl of the weaker ridges of the forward and backward FTLE fields
inside the large eddy which are not associated with the instantaneous geometry of the invariant stable/unstable
manifolds.

28



Figure 16: Comparison between the forward FTLE map (yellow/red shades) and stable (blue, cyan) manifolds of
two DHTs (black dots) computed in the flow (60) at t = −4. The FTLE field was computed with T = 25 and the
LCS, represented by the red ridges, were ‘extracted’ by filtering the colour map. The manifolds inside the black
rectangle were removed in order to reveal the LCS underneath. See figures 15 and 17 for the geometry at other times
during the transition.

Figure 17: The forward FTLE map (yellow/red shades) superimposed with the stable (blue, cyan) manifolds of two
DHTs (black dots) computed in the flow (60) at t = −8. The FTLE field was computed with T = 25 and the LCS,
represented by the red ridges, were ‘extracted’ by filtering the colour map. The manifolds inside the black rectangle
were removed in order to reveal the LCS underneath. See figures 15 and 16 for the geometry at other times during
the transition.
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Figure 18: (centre) Dynamics in the two invariant planes, Ix = {(x, y, t) ∈ IR2 × IR : y = 0} and
Iy = {(x, y, t) ∈ IR2 × IR : x = 0}, in the extended phase space of the flow associated with (64) with σ(t)
given by (68). The flow undergoes a transition associated with changes in finite-time stability properties of the
trivial solution xxx(t) = 0 (see text). The Distinguished Hyperbolic Trajectories are marked by thick black lines and
paths of instantaneous stagnation points (ISPs) are marked by dashed green lines (and by green dots in (a-c)). The
dynamics in the invariant plane Ix corresponds to Scenario II in §3.1. (a-c) Instantaneous streamline patterns in the
flow associated with (64) at three different times.

Figure 19: Backward FTLE fields, λT (x, y, t) cf A.2, computed for the system (64) with σ(t) given by (68) at t = 5
and different integration time lengths a) |T | = 1, b) |T | = 3, c) |T | = 5, d) |T | = 10. 1D cross sections of these fields
along (x, y = 2) are shown in the central panel. The flow associated with (64) undergoes a transition which results
in an emergence of four new eddies which are present in both the Eulerian and Lagrangian frameworks. Contrary
to common intuition, the location of the strongest ridges in the FTLE fields varies with T and the overall strength
of the ridges diminishes with T . This phenomenon is a direct consequence of the transition. Note also that the
strongest ridge in (d), located at x = 0, is a ‘ghost’ of the the dominant repelling structure before the transition.
The stable manifolds (blue) and unstable manifolds (red) of four hyperbolic trajectories involved in this process are
shown in (e).
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a subset of Iy, for any J ⊂ (t∗,∞) the unstable manifold Wu
J [xxx(t) = 0] contains a subset of

Ix. The converse is true for the finite-time stable manifolds, Ws
J [xxx(t) = 0], for, respectively,

J ⊂ (−∞, t∗) and J ⊂ (t∗,∞).
Similarly to the one-dimensional dynamics considered in §3.1, the changes in stability prop-

erties of the trivial solution are accompanied by a transition in the Lagrangian flow structure,
which is associated with changes in the geometry of certain distinguished, hyperbolic trajecto-
ries. Due to the presence of higher order terms in (66) and (67) we cannot compute the distin-
guished trajectories in a way analogous to (10). However, one can resort here to the iterative
algorithm (cf Appendix A and [45, 49]) as in most other cases discussed in this work. Recall
that, as it was shown in [45, 49], if the iterative algorithm converges, it returns a hyperbolic
trajectory. Such a trajectory is branded ‘distinguished’ if it is also bounded (cf Definition A.6)
on the considered time-interval9. Since we are concerned in this example with a system which
is defined on I = IR and asymptotically autonomous due to the form of (68), the obvious
candidates for the location of the DHTs for t → ±∞ are given by the hyperbolic stagnation
points of the autonomous dynamical systems given respectively by (64) with σ∗ = lim

t→±∞
σ(t).

One would then expect the existence of five DHTs after the transition and one DHT before the
transition. Since the DHT are, of course, trajectories, they cannot bifurcate. Consequently,
all of the five trajectories which would be branded ‘DHTs’ after the transition must exist in
the flow before the transition. For a given time interval I ⊂ IR the finite-time DHTs can be
located using the iterative algorithm provided that one can choose an initial guess, given by
a frozen-time hyperbolic (cf Definition A.5) path, which is C1 and lies sufficiently close to the
sought DHT (cf (82) in the Appendix A). Often, a useful initial guess can be constructed from
the paths of instantaneous stagnation points which are frozen-time hyperbolic. This strategy
is also useful here for finding two DHTs contained in the invariant plane Iy. However, due
to the nature of the dynamics in Ix (which is identical with that considered in Scenario II of
§3.1) we are unable to construct a guess on intervals containing t∗ which would lie sufficiently
close to the DHT. Identification of DHTs on intervals contained in (t∗,∞) does not pose such
difficulties but the outcome depends on the time interval chosen, i.e. the iterative algorithm
converges onto different hyperbolic trajectories depending on the considered time interval (see
the footnote). We compare the stable manifolds of the identified DHTs with ridges of FTLE
fields computed for this flow in figure 19.

When attempting to characterise the flow associated with (64) and (68) using the FTLE
fields, one can, as in the previous examples, identify the one-parameter family of FTLE fields,˘
λT (x, y, t)

¯
T∈IR, which are computed over different integration time intervals. Despite this

non-uniqueness of the FTLE diagnostic, in most examples presented so far one could obtain
good agreement between the invariant manifold calculations and the LCS obtained from λT for
sufficiently large T . In this case, however, the situation is rather different and in many ways
analogous to the one-dimenisonal configuration discussed in §3.1. In figure 19 we show results
of backward FTLE computations at t = 5 for the flow associated with (64) and σ(t). The panels
(a-d) show results of computations over four different lengths of the integration time interval
(a) |T | = 1, (b) |T | = 3, (c) |T | = 5, (d) |T | = 10; the central panel show 1D cross-sections of
these fields at (x, y = 2). Three issues affecting the ridges of the shown FTLE fields are worth
noting: (i) the geometry of the ridges (i.e. the LCS) and their connectivity changes with T ,
(ii) the relative and absolute strength of the ridges diminishes with T , (iii) for sufficiently long
(backward) integration times the strongest ridge in the FTLE field corresponds to a ‘ghost’ of
the pre-transition flow structure (see y = 0 in (d)). Consequently, it is rather difficult to obtain
a coherent picture of the flow structure based on the family of FTLE’s,

˘
λT (x, y, t)

¯
T∈IR, in

this case.

4 Conclusions

In this paper we have considered issues associated with the characterisation of the infinite time
notion of hyperbolicity for aperiodically time dependent vector fields that are only known on
a finite time interval by exploring concepts of finite-time hyperbolic trajectories, their finite
time stable and unstable manifolds, as well as (one-parameter) families of finite-time Lyapunov

9Note that on a finite time interval this notion is non-unique since any trajectory of a smooth vector field is
bounded on a bounded time interval. However, the ambiguities due to the non-uniqueness are, in general, only
non-negligible near the end points of the time interval; cf [49, 45].
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exponent (FTLE) fields and associated Lagrangian coherent structures. Our approach has been
to consider a collection of diverse examples where explicit phenomena can be exhibited and
controlled.

In Section 3.1 we considered a one-dimensional vector field where the aperiodic time-
dependence was specified in three distinct ways. This enabled us to probe the phenomenon of
flow transitions and show how they may give rise to ambiguities in the effort to determine flow
barriers from non-unique FTLE fields. Similarly, we used this configuration to illustrate issues
associated with the lack of a unique, locally distinguished hyperbolic trajectories organising
the structure of the flow. In Section 3.2.1 we considered two essentially dynamically opposite
examples where the Lyapunov exponents of every trajectory could be determined analytically.
In each example all Lyapunov exponents were identical, hence the FTLE fields did not give rise
to LCSs. This highlighted the point that the emergence of LCSs is a consequence of spatial
heterogeneity in the FTLE field and not just due to a rapid separation of nearby trajectories. In
Section 3.2.2 we considered a velocity field exhibiting the strain-vortex-strain transition. This
example illustrated some crucial issues associated with attempts to understand the nature of
transport barriers in a transitioning flow in the finite-time setting. In this case, depending on the
length and location of the ‘observation window’, different diagnostics could be obtained when
employing the invariant manifold approach as compared with FTLE fields. In Section 3.2.3
we considered a double-gyre flow which has become a common benchmark flow in the LCS
literature. We used this example to show that essentially the same information about the flow
structure can be obtained from both techniques provided sufficient care is taken. This seems to
be a common situation in flows which do not undergo transitions. We also illustrated there the
sensitivity of the results to the order of the integrator used in computation of the trajectories
as well as the importance of the cut-off level for the filtering procedure used in extracting LCSs.
These conclusions and, in particular, the need for accurate trajectory integration, is further
stressed in section 3.2.4 where we considered an axisymmetric, time-dependent perturbation of
the Hills spherical vortex. This flow serves as a good illustration of how inaccurate integration
of flow trajectories can lead to plausible yet incorrect FTLE fields. The two closing examples,
considered in sections 3.2.6 and 3.2.7, were linked to the one-dimensional examples discussed
in §3.1. The kinematic model of an ‘eddy-pair system’, discussed in §3.2.6, is a common feature
in geophysical flows and both the invariant manifold and the FTLE methods yield correlated
diagnostics of the flow structure in this case. The ‘eddy-quadrupole’ system, discussed in §3.2.7,
further highlights the problems that might arise when trying to select the most suitable FTLE
field from the family parameterised by the integration time length. In particular this example
illustrates the ambiguities one may encounter when attempting to increase the length of the
integration time interval in order to obtain longer and more pronounced ridges in the FTLE
field. Finally, we collect a number of technical details on finite-time hyperbolicity and its use in
understanding fluid transport as well as a detailed discussion of an important technical detail
concerning the choice of the initial material segment for the computation of finite time stable
and unstable manifolds of finite time hyperbolic trajectories.

The phenomena discovered and analysed in our examples point the way to a variety of
directions for rigorous mathematical research in this rapidly developing, and important, new
area of dynamical systems theory.
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A Some important definitions

In order to make the discussion presented in this paper relatively self-contained, we recapitulate
here some fundamental notions and definitions which are important for the analysis presented
in the preceding sections. All of the material included in this section can be found in existing
literature and we provide references, which are not exhaustive, to some relevant material.

Consider a velocity field vvv : IRn × I → IRn defined over a time interval I = [ti, tf ] ⊂ IR and
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a system of ODE’s
ẋxx = vvv(xxx, t), xxx ∈ IRn, t ∈ I. (69)

The curves, γγγ(t) : I → IRn that satisfy (69), i.e. γ̇γγ(t) = vvv(γγγ(t), t), are referred to as IRn-
embedded trajectories of the non-autonomous dynamical system associated with vvv (other em-
beddings are possible; for example, γ̃γγ(t) : I → IRn × I, but we do not require such notions
here).

Consider now a linearisation of the system (69) about a Cr (r > 1) path, x̃xx(t) : I → IRn,
which is not necessarily a trajectory of (69), in the following form

ξ̇ξξ = ∂xvvv(x̃xx(t), t) ξξξ, (70)

where ξξξ(t) = xxx(t)− x̃xx(t) and ∂xvvv(x̃xx(t), t) is the Jacobian of vvv(xxx, t) evaluated at xxx = x̃xx(t). We let
X(t, ti) denote the fundamental solution matrix of (70), i.e. it is the map X(t, ti)(·) : IRn → IRn

which is linear in ti and Lipschitz in t. Moreover, if ξξξ(t, ξξξi, ti) is a solution of (70), then
ξξξ(t, ξξξi, ti) = X(t, ti)ξξξi, and X(t, s)X(s, ti) = X(t, ti).

Consider first a situation when x̃xx is a trajectory of (69), i.e x̃xx = γγγ(t) and γ̇γγ(t) = vvv(γγγ(t), t).
Then, (70) describes the dynamics in the neighbourhood of the trajectory γγγ(t) in the frame
moving at speed γ̇γγ. Thus, if δtiδtiδti denotes the perturbation of γγγ(t) at t = ti, we find that it
evolves according to

||δδδ(t)|| =
p
〈X(t, ti)δtiδtiδti ,X(t, ti)δtiδtiδti〉 =

p
〈δδδti ,X(t, ti)TX(t, ti)δδδti〉, (71)

where ∆ = X(t, ti)
TX(t, ti) is commonly referred to as the finite-time Cauchy-Green tensor.

Since ∆ is real and symmetric, it can be diagonalised in an orthogonal basis of eigenvectors
which denote the principal axes of growth of the infinitesimal perturbation. It then follows
that the tensor

M =
`
X(t, ti)

TX(t, ti)
´1/2(t−ti)

, (72)

is also diagonalisable in the same orthogonal basis.

Definition A.1 (Finite-time Lyapunov exponents, λiT (xxx, t)). The logarithms of the eigenvalues
of M and are called the finite-time Lyapunov exponents computed at time t over the time
interval T . If T > 0, λiT (xxx, t) is called the i-th forward finite-time Lyapunov exponent. If
T < 0, λiT (xxx, t) is called the i-th backward finite-time Lyapunov exponent.

For more details regarding properties of Lyapunov exponents the reader is referred to ([51,
56, 57]), and for description of algorithms allowing their computation see, for example, ([23,
22, 24, 35, 32]).

Definition A.2 (Finite-time Lyapunov exponent field, λT (xxx, t)). Assume that

λ1
T (xxx, t), λ2

T (xxx, t), . . . , λnT (xxx, t), (73)

represent the finite-time Lyapunov exponents computed for a trajectory of (69) passing through
xxx ∈ IRn at t. The scalar field

λT (xxx, t) = max
ˆ
λ1
T (xxx, t), λ2

T (xxx, t), . . . , λnT (xxx, t)
˜
, (74)

is called the finite-time Lyapunov exponent field at time t computed over a time interval of
length T . If T > 0, it is called a forward FTLE field and if T < 0, it is called a backward FTLE
field.

Definition A.3 (Finite-time Exponential Dichotomy). We say that the linear equation (70)
has an exponential dichotomy on the finite time interval I if there exists a (constant) projection
operator P ∈ IRn×n, P2 = P, and positive constants K, L, α, β such that:

|X(t, ti)PX−1(s, ti)| 6 Ke−α(t−s), for t > s, t, s ∈ I,

|X(t, ti)(Id−P)X−1(s, ti)| 6 Le−β(s−t), for s > t, t, s ∈ I. (75)

For more details see, for example, [19, 43]. The notion of a generalised exponential dichotomy,
where P does not have to be constant, is discussed for example, in [85]. Numerical methods
for calculating the constants K, L, α, and β are given in [23].

Using the notion of exponential dichotomy, we can provide one possible definition of finite-
time hyperbolicity.
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Definition A.4 (Finite-time Hyperbolicity). We say that the path x̃xx(t) : I → IRn is finite-time
hyperbolic on the interval I if the equation (70) has exponential dichotomy on I. Furthermore,
if γγγ(t) is a trajectory of the system (69) and we let x̃xx = γγγ(t), then γγγ is called a finite-time
hyperbolic trajectory on the interval I if the equation

ξ̇ξξ = ∂xvvv(γγγ(t), t) ξξξ, (76)

has exponential dichotomy on I.
Remark: In the limit ti → −∞, tf →∞ and x̃xx = γγγ(t), the above definition becomes equivalent
to the standard notion of a hyperbolic trajectory.

Roughly speaking, finite-time hyperbolicity implies that there exists a k-dimensional (k 6 n)
subspace in IRn of solutions tending to zero exponentially in forward time, and a (n − k)-
dimensional subspace of solutions approaching γγγ(t) at an exponential rate in backward time;
no assumptions are made the about the fate of these neighbouring trajectories beyond I even
if the velocity field vvv(xxx, t) is known outside this interval.

Definition A.5 (Frozen-time Hyperbolicity). We say that the path x̃xx(t) : I → IRn is frozen-
time hyperbolic on the finite interval I if the eigenvalues of the Jacobian, ∂xvvv(x̃xx(t), t), in the
linearised equation (70) have non-zero real parts for any fixed t ∈ I.

Remark: It can be shown, using results discussed in [49], that a path which is frozen-time
hyperbolic is also finite-time hyperbolic (but not vice versa).

Using definitions A.3 and A.4, we can finally identify a special type of a hyperbolic trajec-
tory which, if present in a considered flow, plays an important role in Lagrangian transport
considerations.

Let x̃xx(t) be a finite-time hyperbolic path and consider the nonlinear equation (69) in a frame
‘moving’ with x̃xx by setting xxx(t) = yyy(t) + x̃xx(t). The transformed equation can be written as

ẏyy = A(t)yyy + f(yyy, t), yyy ∈ IRn, t ∈ I. (77)

where

A(t) = ∂xvvv(x̃xx(t), t), (78)

f(yyy, t) = vvv
`
yyy(t) + x̃xx(t)

´
− ∂xvvv

`
x̃xx(t), t

´
yyy(t)− ˙̃xxx(t). (79)

Since we assumed that x̃xx(t) is finite-time hyperbolic (see Definition A.2), we can associate
the particular solution of (77) with the following integral equation

yyy(t) = X(t, ti)

Z t

ti

PX−1(s, ti)f(yyy(s), s)ds−X(t, ti)

Z tf

t

(Id−P)X−1(s, ti)f(yyy(s), s)ds, (80)

where P is the projection operator associated with the exponential dichotomy (75) and X is the
fundamental solution matrix associated with the linear part of (77). It can be easily checked
that the solution of (80) represents the only solution of (77) which does not exhibit exponential
growth or decay within I. Furthermore, using very similar techniques to those employed in [50],
it can be shown that, for given x̃xx(t), the solution of (80) is finite-time hyperbolic and unique
on the time interval I provided that

||vvv(xxx(t), t)− ∂xvvv(x̃xx(t), t)(xxx(t)− x̃xx(t))− ˙̃xxx(t)||∞ <∞, ∀ t ∈ I, (81)

and

||∂xvvv(xxx(t), t)− ∂xvvv(x̃xx(t), t)||∞ <

„
K

α
+
L

β

«−1

, ∀ t ∈ I. (82)

The constants K, L, α, β are associated with the exponential dichotomy of the linear part of
(77) (cf. Definition A.3).

Definition A.6 (Distinguished, Finite-time Hyperbolic Trajectory). Let x̃xx(t) be a finite-time
hyperbolic path which does not have an exponential component within I. A trajectory γγγ(t)
of the system (69) is called a Finite-time Distinguished Hyperbolic Trajectory if it can be rep-
resented as γγγ(t) = yyy(t) + x̃xx(t) where yyy(t) satisfies the integral equation (80) subject to the
conditions (81) and (82), and the path x̃xx is frozen-time hyperbolic (cf Definition A.5) .
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Remarks. Two issues are worth noticing here:
(i) The frozen-time hyperbolic path x̃xx(t) used in Definition A.6 can be given, in particular,

by a path of Instantaneous stagnation points (ISPs) which are frozen-time hyperbolic (cf. Def-
inition A.5). Given the velocity field vvv : IRn× I → IRn, a path of ISPs is given by a continuous
curve, xxxisp(t), such that

vvv(xxxisp(t), t) = 0, t ∈ Ĩ , (83)

where T̃ ⊂ I is a time interval within which the Jacobian, ∂xvvv(xxxisp(t), t), does not vanish, as
required by the Implicit Function Theorem for the existence of a solution to (83).

(ii) The notion of a Distinguished, Finite-time hyperbolic trajectory is, in general, non-
unique on any finite time (or semi-finite) interval.

Definition A.7 (Rate-of-Strain tensor). The symmetric part

Ŝγ(t) = 1
2
[Aγ(t) +Aγ(t)T ], (84)

of Aγ(t) = ∂xvvv(γγγ(t), t) is called the rate of strain tensor.

The rate of strain tensor describes the growth or decay of solutions ξξξ(t) of the linearised
system (70). This can be seen by directly evaluating d‖ξξξ(t)‖2/dt, i.e.

d

dt
‖ξξξ(t)‖2 =

d

dt
〈ξξξ(t), ξξξ(t)〉 =

˙
ξξξ(t), [Aγ(t) +Aγ(t)T ]ξξξ(t)

¸
= 2
˙
ξξξ(t), Ŝ(t)ξξξ(t)

¸
, (85)

where 〈·, ·〉 denotes the canonical inner product on IRn, which induces the norm ‖ξξξ‖ =
p
〈ξξξ, ξξξ〉.

Thus, if Ŝ(t) is negative definite, all solutions of the linearised system are strictly monotonically
decaying (in the sense of their norm) to the trivial solution. When Ŝ(t) is positive definite,
all solutions of the linearised system are strictly monotonically growing (in the sense of their
norm). If the strain tensor is indefinite or semi-definite one can define the following set

Definition A.8 (Zero-Strain set, cf [38]). The set

Zγ(t) =
˘
ξξξ ∈ IR2 : 〈ξξξ, Ŝγ(t)ξξξ〉 = 0

¯
, (86)

is called the zero-strain set associated with linearisation about γγγ(t).

Definition A.9 (Strain Acceleration Tensor (or Cotter-Rivlin rate of Ŝ tensor)). The time-
dependent operator

M̂γ(t) =
d

dt
Ŝγ(t) + Ŝγ(t)Aγ(t) +Aγ(t)T Ŝγ(t), (87)

is called the strain acceleration set associated with linearisation about γγγ(t). The restriction of
M̂γ to the zero-strain set is denoted by M̂Z

γ .

The strain acceleration tensor is associated with the second derivative of ‖ξξξ(t)‖, i.e.

d2

dt2
‖ξξξ(t)‖2 =

d

dt
〈ξξξ(t), Ŝ(t)ξξξ(t)〉 = 〈ξξξ(t), M̂γ(t)ξξξ(t)〉. (88)

The following extends the dynamic EPH partition of IR2 introduced in Haller [38] and
generalised to a compressible flow setting in Duc & Siegmund [28]:

Definition A.10 (Dynamic partition of IR2). Consider the extended phase space, IR2 × I,
associated with the flow induced by (69). For each t ∈ I one can define the following sets

(i) Attracting region: A(t) = {xxx ∈ IR2 : Ŝx(t) is negative definite},
(ii) Repelling region: R(t) = {xxx ∈ IR2 : Ŝx(t) is positive definite},

(iii) Elliptic region: E(t) = {xxx ∈ IR2 : Ŝx(t) is indefinite, M̂Z
x (t) is indefinite},

(iv) Hyperbolic region: H(t) = {xxx ∈ IR2 : Ŝx(t) is indefinite, M̂Z
x (t) is positive definite},

(iii) Quasi-hyperbolic region: Q(t) = {xxx ∈ IR2 : Ŝx(t) is indefinite, M̂Z
x (t) is negative definite},

(iii) Degenerate region: D(t) = IR2\[A(t) ∪R(t) ∪ E(t) ∪H(t) ∪Q(t)]}.

Definition A.11 (Finite-time hyperbolicity according to the EPH partition; Haller [38]). As-
sume that n = 2 in (69) and that the velocity field satisfies ∇vvv = 0. A trajectory γγγ(t) : I → IR2

of (69) is called finite-time hyperbolic on the interval I if
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(i) γγγ(t) intersects D(I) at isolated points.

(ii) If IE denotes a time interval that the trajectory spends in E(I), thenZ
IE

√
2
˛̨
Ŝγ(t)

˛̨
dt <

π

2
, (89)

where
˛̨
S
˛̨

=
qP2

i,j=1 |Sij |2.

The condition (ii) implies that if γγγ(t) is finite-time hyperbolic, its finite-time stable and unstable
manifolds of are non-empty. See [38] for details. See also Appendix B and [28, Theorem 42].

B On the choice of the initial material segment in nu-
merical computations of stable and unstable manifolds
of (finite-time) hyperbolic trajectories.

We briefly discuss here the problem of approximating stable and unstable manifolds of flow
trajectories which are finite-time hyperbolic (cf Definition A.4).

Consider the linearisation (70) of the dynamical system (69) about a system trajectory (so
that γ̇γγ(t) = fff(γγγ(t), t) for t ∈ I). In such a case the the stability properties of the trivial solution
ξξξ(t) = 0 of (70) correspond to the linear stability properties of γγγ(t) in (69). As already noted
in §3.2.2, if the system (69) is only known (or defined) on a bounded interval I ⊂ IR, it is not
possible to define the stable and unstable manifolds of ξξξ(t) = 0 in the traditional ‘inifinite-time’
sense even if ξξξ(t) = 0 is hyperbolic (in the inifinite-time sense) for the system (70) considered
on I = IR. However, if ξξξ(t) = 0 is finite-time hyperbolic on I, one can define (cf [28]) the
following two flow-invariant, ‘stable’ and ‘unstable’ sets: The finite-time stable set of γγγ(t) = 0
on I is given by

Ws
I [γγγ] =


(ξξξt, t) ∈ IR2 × I :

d

dm
‖X(m, t)ξξξt‖ < 0, ∀ m ∈ I

ff
, (90)

and the finite-time unstable set of ξξξ(t) = 0 on I is defined, for t ∈ I, as

Wu
I [γγγ] =


(ξξξt, t) ∈ IR2 × I :

d

dm
‖X(m, t)ξξξt‖ > 0, ∀ m ∈ I

ff
, (91)

where X is the fundamental solution matrix associated with (69) and ‖ · ‖ is the norm induced
by the canonical inner product on IR2, i.e. ‖xxx‖ =

p
〈xxx,xxx〉. The instantaneous geometry of (90)

and (91) is given by

Ws
I [γγγ](t) =


ξξξt ∈ IR2 :

d

dm
‖X(m, t)ξξξt‖ < 0, ∀ m ∈ I

ff
, (92)

and

Wu
I [γγγ](t) =


ξξξt ∈ IR2 :

d

dm
‖X(m, t)ξξξt‖ > 0, ∀ m ∈ I

ff
, (93)

referred to as t-fibres. In contrast to the classical (time asymptotic) definition of stable and un-
stable manifolds, the finite-time counterparts, Wu

I and Ws
I , have the dimension of the extended

phase space (rather than a lower dimension) and their t-fibres are open sets in IRn. In such
a case, a common approach used in the invariant-manifold Lagrangian transport analysis is to
choose (non-unique) segments of initial conditions of length α� 1, Uαta and Sα

ta , containing the
trivial solution of the linearised system and follow their forwards and backward time evolution.
We show below (cf Proposition B.2) how to choose the (non-unique) material segments in such
a way that they are contained in, respectively, the finite-time stable and unstable manifolds.

Recall first that the trivial solution ξξξ(t) = 0 of the linearised equation corresponds to γγγ(t)
of (69). Thus, if γγγ(t) ∈ H(t) then also ξξξ(t) ∈ H(t). Furthermore, if ξξξ is finite-time hyperbolic
on I, the (symmetric) rate of strain tensor, Ŝ(t), is indefinite (cf Definition A.10) on I so that,
for each t ∈ I, the zero-strain set contains two orthogonal lines and is given by

Zγ(t) =
˘
zzz1, zzz2 ∈ IR2 : 〈zzz1(t), zzz2(t)〉 = 0, 〈zzz1(t), Ŝγ(t)zzz2(t)〉 = 0

¯
. (94)
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We now define a subset of nondecreasing solutions at t as

Ψ+(t) =


ξξξt ∈ IR2 :

d

dm
‖X(m, t)ξξξt‖

˛̨̨̨
m=t

> 0

ff
, (95)

a subset of nonincreasing solutions at t in as

Ψ−(t) =


ξξξt ∈ IR2 :

d

dt
‖X(m, t)ξξξt

˛̨̨̨
m=t

‖ 6 0

ff
, (96)

so that Ψ+(t) ∩ Ψ−(t) = Zγ(t). Moreover, for γγγ(t) ∈ H(t) the restriction of the strain
acceleration tensor to Zγ(t), M̂Z

γ (t), is positive definite, i.e. 〈ξξξ1(t), M̂(t)ξξξ1(t)〉 > 0 and

〈ξξξ2(t), M̂(t)ξξξ2(t)〉 > 0 which, based on (88), implies that solutions, ξξξ(t, ξξξt∗ , t
∗), ξξξt∗ ∈ Zγ(t∗), of

(70) cross the zero strain set Zγ(t∗) at t = t∗ from the region of decreasing norm to the region
of increasing norm.

Proposition B.1. Consider a trajectory γγγ(t) of (69) and the corresponding trivial solution of
the linearised system (70) on I = [ta, tb] with the fundamental solution matrix X(t, ta). The
finite-time unstable set, Wu

I [γγγ(t)] and the finite-time stable set, Ws
I [γγγ(t)] are invariant under the

action of X(t, ta). Moreover, if γγγ(t) ∈ H(t) for t ∈ I, the set Ψ+
I = {ξξξ ∈ IR2 : ∃ t ∈ I, ξξξ ∈ Ψ+(t)}

is forward-time invariant and the set Ψ−I = {ξξξ ∈ IR2 : ∃ t ∈ I, ξξξ ∈ Ψ−(t)} is backward time
invariant. In particular, Wu

I [γγγ](ta) = Ψ+(ta) and Ws
I [γγγ](tb) = Ψ−(tb).

Proof. The invariance of Wu
I [γγγ(t)] and Ws

I [γγγ(t)], as well as the forward-time invariance of Ψ+(t)
and the backward-time invariance of Ψ−(t), was discussed in [28, cf Remark 23, Theorem 44].
In order to show that Wu

I [γγγ](ta) = Ψ+(ta) we appeal to the forward invariance of Ψ+(t) under
the action of X(t, ta).

Assume first that the opposite holds, i.e. that ξξξt∗ ∈ Ψ+(t∗) and that ξξξ(t∗∗, ξξξt∗ , t
∗) /∈ Ψ+(t∗∗)

for t∗ < t∗∗, t∗, t∗∗ ∈ I. Due to continuity of ξξξ(t), the trajectory has to cross the zero strain
set at some time t∗ < t× < t∗∗ which requires that ξξξ(t×, ξξξt∗ , t

∗) ∈ Zγ(t×) and

d2

dt2
‖ξξξ(t, ξξξt∗ , t∗)‖

˛̨̨̨
t=t×

= 〈ξξξ(t×), M̂(t×)ξξξ(t×)〉 < 0, ξξξt∗ ∈ Ψ+(t∗), (97)

which contradicts the fact that if γγγ(t) ∈ H(t) for t ∈ I, M̂(t) is positive definite on Zγ(t) for
t ∈ I. Consequently, if γγγ(t) ∈ H(t) and ξξξt∗ ∈ Ψ+(t∗), then ξξξ(t) ∈ Ψ+(t) for t > t∗, t, t∗ ∈ I,
which implies that Ψ+ is forward-time invariant on I. Note that Ψ+ is not backward time
invariant. In order to see this, it is sufficient to consider trajectories crossing the zero strain
set, Zγ(t∗), at t∗ ∈ (ta, tb]. Since ∂Ψ+(t∗) = Zγ(t∗), any trajectory ξξξ(t, ξξξt∗ , t

∗), ξξξt∗ ∈ Zγ(t∗)
leaves Ψ+ for t < t∗ in backward time. We finally not that the set Ψ+(ta) is invariant under
the action of X(t, ta), which implies that Ψ+(ta) ⊂ Wu

I [γγγ](ta). However, based on definitions
(95) and (92) is is clear that Wu

I [γγγ](t) ⊂ Ψ+(t) which implies that Ψ+(ta) = Wu
I [γγγ](ta).

Similar procedure can be used in backward time to show that Ψ− is backward-time invariant
on I.

Proposition B.2. Consider the linearised flow (70) over the time interval I so that the trivial
solution is finite-time hyperbolic on I (in the sense that γγγ(t) ∈ H for t ∈ I). If the material
segments, Uαta , Sα

tb , are chosen as

Uαta =
˘
xxx ∈ IR2 : xxx = βSSS+(ta), β ∈ [−α

2
,
α

2
] ⊂ IR

¯
, (98)

and
Sα
tb =

˘
xxx ∈ IR2 : xxx = βSSS−(tb) β ∈ [−α

2
,
α

2
] ⊂ IR

¯
, (99)

where SSS+(t) and SSS−(t) are the eigenvectors of the rate of strain tensor, Ŝ(t), corresponding to
the eigenvalues s+(t) > 0, s−(t) < 0. Then, Uαta ⊂Wu

ta{ξξξ = 0} and Sα
ta ⊂Ws

tb{ξξξ = 0}.
Proof. For any point uta = βSSS+(ta) ∈ Uαta , |β| 6 α/2, we have

〈uta , Ŝ(ta)uta〉 > 0, (100)

which implies that uta ∈ Ψ+(ta) = Wu
I [γγγ](ta). The invariance of Wu

I [γγγ] implies that
ξξξ(t, uta , ta) ∈ Wu

I [γγγ](t) for t ∈ I. Similarly, for any point stb = βSSS−(ta) ∈ Sα
ta , |β| 6 α/2, we

have
〈stb , Ŝ(tb)stb〉 < 0, (101)
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which implies that stb ∈ Ψ−(tb) = Ws
I [γγγ](tb). The invariance of Ws

I [γγγ] implies that
ξξξ(t, stb , tb) ∈Wu

I [γγγ](t) for t ∈ I.

Note finally that, due to the the embedding property of finite-time stable and unstable
manifolds (see [28, Theorem 37, p. 659]), the stable and unstable manifolds of ξξξ(t), for two
time intervals I, J , such that I ⊂ J , satisfy the following

W s
I ⊂W s

J and Wu
I ⊂Wu

J . (102)

Thus, the effect of the non-unique choice of the initial material segments diminishes with the
length of the considered time interval, provided that the considered trajectory is finite-time
hyperbolic on I.
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